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Abstract. Bernstein polynomials on a simplex V are considered. The expan-
sion of a given polynomial p into these polynomials provides bounds for the
range of p over V . Bounds for the range of a rational function over V can easily
obtained from the Bernstein expansions of the numerator and denominator
polynomials of this function. In this paper it is shown that these bounds con-
verge monotonically and linearly to the range of the rational function if the
degree of the Bernstein expansion is elevated. If V is subdivided then the con-
vergence is quadratic with respect to the maximum of the diameters of the
subsimplices.
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1 Introduction

During the last decade, polynomial minimization over simplices has attracted the in-
terest of many researchers, see [1, 2], [4], [6–12]. Special attention was paid to the use
of the expansion of the given polynomial into Bernstein polynomials over a simplex,
the so-called simplicial Bernstein expansion, [2], [4], [8], [10–12]. In [10–12], R. Leroy
gave results on degree elevation and subdivision of the underlying simplex of this ex-
pansion. In [13] the Bernstein form of a polynomial over a box, the so-called tensorial
Bernstein form, was used to find an enclosure of the range of a given (multivariate)
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rational function over a box. Convergence properties of this tensorial rational Bern-
stein form were investigated in [5]. In this paper we present convergence properties
of the corresponding simplicial rational Bernstein form based on Leroy’s results.
The organization of our paper is as follows: In the next section we briefly recall the
simplical polynomial Bernstein form and its basic properties, e.g., their range en-
closing property. We also provide additional properties like sharpness, monotonicity,
and convergence of the bounds which will be used later on. In Section 3 we present
our main results, viz. convergence properties of the simplicial rational Bernstein
form.

With the exception of the range enclosing property of the polynomial and ratio-
nal forms, we state the results in each case only for the maximum of the quantities
under consideration because the respective statements for the minimum are analo-
gous.

2 Bernstein Expansion over a Simplex

In this section we present firstly the most important and fundamental properties of
the Bernstein expansion over a simplex we will employ throughout the paper.

We follow the notation and definitions that have been used in [11], [12]. Firstly,
we recall the definition of a simplex.

Definition 1. Let v0, . . . , vn be n + 1 points of Rn . The ordered list V = [v0, . . . , vn ] is
called simplex of vertices v0, . . . , vn . The realization |V | of the simplex V is the set of
Rn defined as the convex hull of the points v0, . . . , vn . The diameter of V is the length
of the largest edge of |V |.

Throughout our paper we will assume that the points v0, . . . , vn are affinely indepen-
dent in which case the simplex V is non-degenerate. We will often consider the sim-
plex ∆ := [0, e1, . . . , en ], called the standard simplex, where 0 is the zero vector in Rn

and ei is the i t h vector of the canonical basis of Rn , i = 1, . . . , n . This is no restriction
since any simplex V in Rn can be mapped affinely upon∆.

Recall that any vector x ∈Rn can be written as an affine combination of the ver-
tices v0, . . . , vn with weightsλ0, . . . ,λn called barycentric coordinates. Ifx= (x1, . . . ,xn )
∈∆, then λ= (λ0, . . . ,λn ) = (1−

∑n
i=1 x i ,x1, . . . ,xn ).

For every multi-index α= (α0, . . . ,αn ) ∈Nn+1 and λ= (λ0, . . . ,λn ) ∈Rn+1 we write
|α| :=α0+. . .+αn andλα :=

∏n
i=0λ

αi

i . The relation≤ onNn+1 is understood entrywise.
For α,β ∈Nn+1 with β ≤αwe define

�

α

β

�

:=
n
∏

i=0

�

αi

βi

�

.

If k is any natural number such that |α|= k , we use the notation
�k
α

�

:= k !
α0 !···αn !

.

Definition 2. [3, Section 8] Let k be a natural number. The Bernstein polynomials of
degree k with respect to V are the polynomials (B k

α )|α|=k , where

B k
α :=

�

k

α

�

λα. (1)
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The Bernstein polynomials of degree k with respect to V take nonnegative values
on V and sum up to 1: 1=

∑

|α|=k B k
α .

Let p be a polynomial of degree l ,

p (x) =
∑

|β |≤l

aβx
β .

Since the Bernstein polynomials of degree k form a basis of the vector space
Rk [X] of polynomials of degree at most k , see, e.g, [10, Proposition 1.6], p can be
uniquely expressed as (l ≤ k )

p (x) =
∑

|α|=k

bα(p , k , V )B k
α . (2)

The numbers bα(p , k , V ) are called the Bernstein coefficients of p of degree k with
respect to V . If V =∆, we obtain by multinomial expansion the following representa-
tion of the Bernstein coefficients in terms of the coefficients of p (|α|= k )

bα(p , k ,∆) =
∑

β≤α

�α
β

�

�k
β

�

aβ . (3)

It is easy to see from (3) that the Bernstein coefficients are linear with respect to p .

Definition 3. Let V = [v0, . . . , vn ] be a non-degenerate simplex of Rn and p ∈Rl [X].

– The grid points of degree k associated to V are the points (|α|= k )

vα(k , V ) :=
1

k
(α0 v0+ . . .+αn vn )∈Rn . (4)

– The control points associated to p of degree k with respect to V are the points
( vα(k , V ),bα(p , k , V ))∈Rn+1.
The set of control points of p forms its control net of degree k .

– The discrete graph of p of degree k with respect to V is formed by the collection
( vα(k , V ), p (vα(k , V )))|α|=k .

In the sequel, (e0, . . . , en ) denotes the standard basis of Rn+1.

Proposition 1. [11, Proposition 2.7] For p ∈Rl [X] the following properties hold.

(i) Interpolation at the vertices:

bk ei = p (vi ), 0≤ i ≤ n ; (5)

(ii) convex hull property: the graph of p over V is contained in the convex hull of its
associated control points;

(iii) range enclosing property:

min
|α|=k

bα(p , k , V )≤ p (x)≤max
|α|=k

bα(p , k , V ),x∈V. (6)
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The following proposition gives necessary and sufficient conditions when equal-
ity holds in (6).

Proposition 2. Let p ∈Rl [X]. Then

max
x∈∆

p (x) =max
|α|=k

bα(p , k ,∆) (7)

if and only if

max
|α|=k

bα(p , k ,∆) =bα∗ (p , k ,∆) for some α∗ = k ei 0 , i 0 ∈ {0, . . . , n} . (8)

A similar statement holds for the minimum.

Proof. Without loss of generality we consider the standard simplex (of dimension
n). If the maximum is attained at an index k ei 0 then the statement holds trivially by
Proposition 1 (i). Conversely, suppose first that the bα(p , k ,∆) are equal for all |α|= k .
Then the statement is trivial. Otherwise not all bα(p , k ,∆) are equal. Suppose that the
maximum of p (x) occurs at x∗ ∈ ∆ with barycentric coordinates λ∗ . If x∗ is in the
interior of∆ then 0< B k

α (λ
∗)< 1 for all |α|= k and hence

p (x∗) =
∑

|α|=k

bα(p , k ,∆)B k
α (λ

∗)

< max
|α|=k

bα(p , k ,∆)
∑

|α|=k

B k
α (λ

∗) =max
|α|=k

bα(p , k ,∆),

a contraction. If x∗ is lying on the boundary of ∆ then it is contained in a subsim-
plex of dimension n−1,∆′ say. The Bernstein coefficients of p over∆′ coincide with
the respective coefficients contained in the part of the array (bα(p , k ,∆), |α| = k )
between the (extreme) coefficients associated with the vertices of ∆′ according to
(5). Now we can apply the arguments used above to ∆′. Continuing in this way of
examining all possible cases, we decrease the dimension of the simplices to be in-
vestigated step by step and arrive finally at the situation in which x∗ is a vertex of ∆
which completes the proof. �

Recall that the barycentric coordinates can be written in terms of the compo-
nents of the variable x ∈ Rn . By multiplying both sides of (2) with 1 =

∑n
i=0λi =

(1−
∑n

i=1 x i )+
∑n

i=1 x i and rearranging the result we obtain, see also [10, Proposition
1.12],

p (x) =
∑

|β |=k+1

bβ (p , k +1, V )B k+1
β , (9)

where

bβ (p , k +1, V ) =bα+el (p , k +1, V ) =
1

k +1

n
∑

i=0, i 6=l

αi bα+el−ei (p , k , V )

+
αl +1

k +1
bα(p , k , V ). (10)
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It is easy to see from (10) that the coefficients bβ (p , k + 1, V ) are convex combi-
nations of the coefficients bα(p , k , V ). Hence the upper bounds decrease monotoni-
cally.

Proposition 3. Let p ∈Rl [X]. Then it holds that

max
|β |=k+1

bβ (p , k +1, V )≤max
|α|=k

bα(p , k , V ). (11)

In order to relate the control net and the discrete graph of a given polynomial, R.
Leroy [11], [12] suggested to use the so-called second differences which are given in
the following definition.

Definition 4. Let V = [v0, . . . , vn ] be a non-degenerate simplex of Rn . For |γ| = k − 2
and 0≤ i < j ≤ n, define the second differences of p of degree k with respect to V as

Ï2bγ,i ,j (p , k , V ) :=bγ+ei+ej−1 +bγ+ei−1+ej −bγ+ei−1+ej−1 −bγ+ei+ej ,

with the convention e−1 := en . The second differences constitute the collection

Ï2b (p , k , V ) := (Ï2bγ,i ,j (p , k , V ))|γ|=k−2, 0≤i<j≤n . (12)

The maximum of the second differences, i.e.,

||Ï2b (p , k , V )||∞ = max
|γ|=k−2, 0≤i<j≤n

|Ï2bγ,i ,j (p , k , V )|, (13)

will play an important role in the subsequent convergence analysis.
The following theorem gives the convergence of the control net to the discrete

graph of a given polynomial with respect to degree elevation. Since any simplex can
be mapped upon the standard simplex by an affine transformation, we present the
following statements only for∆.

Theorem 1. [12, Theorem 4.2] Let p ∈Rl [X] and l < k . Then

max
|α|=k

|p (vα(k ,∆))−bα(p , k ,∆)| ≤
n (n +2)l (l −1)

24(k −1)
||Ï2b (p , l ,∆)||∞. (14)

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. Let p ∈Rl [X]. If l < k , then

max
|α|=k

bα(p , k ,∆)−max
x∈∆

p (x)≤
T1

k −1
, (15)

where

T1 :=
n (n +2)l (l −1)

24



Ï2b (p , l ,∆)




∞ . (16)
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Proof. Assume that the maximum of
�

bα(p , k .∆)
�

such that |α| = k is attained at
bα∗ (p , k ,∆). Then we have

max
|α|=k

bα(p , k ,∆)−max
x∈∆

p (x) ≤ bα∗ (p , k ,∆)−p (vα∗ )

=
�

�bα∗ (p , k ,∆)−p (vα∗ )
�

�≤
T1

k −1
.

The second inequality follows since vα∗ is a grid point in ∆, while the last inequality
follows by using Theorem 1. �

Definition 5. Let V = [v0, . . . , vn ] be a non-degenerate simplex of Rn and v′ ∈Rn . The
simplices V i generated by subdivision with respect to the point v′ are defined as

V i := [v0, . . . , vi−1, v
′
, vi+1, . . . , vn ], 0≤ i ≤ n .

Assume that∆ has been subdivided with respect to a point v′ in∆,∆= V 1 ∪ . . .∪
V σ say. By using [12, Algorithm 4.6 (de Casteljau)] it is easy to see that the Bernstein
coefficients of p over any V i are contained in the interval [min|α|=k bα(p , k ,∆),
max|α|=k bα(p , k ,∆)], 1≤ i ≤σ, see [12, Remark 4.7]. The following theorem gives the
convergence of the control net to the discrete graph with respect to subdivision.

Theorem 2. [12, Theorem 4.9] Let ∆ = V 1 ∪ . . .∪V σ be a subdivision of the standard
simplex ∆ and h be an upper bound on the diameters of the V i ’s. Then, for each i ∈
{1, . . . ,σ} and |α|= k , we have

|p (vα(k , V i ))−bα(p , k , V i )| ≤ h2k
n 2(n +1)(n +2)2(n +3)

576
||Ï2b (p , k ,∆)||∞.

The following corollary can similarly be proven as Corollary 1.

Corollary 2. Let p ∈Rl [X],∆=V 1 ∪ . . .∪V σ be a subdivision of the standard simplex
∆ and h be an upper bound on the diameters of the V i ’s. Then

max
|α|=k ,

i=1,...,σ

bα(p , k , V i )−max
x∈∆

p (x)≤ h2T2, (17)

where

T2 := k
n 2(n +1)(n +2)2(n +3)

576



Ï2b (p , k ,∆)




∞ . (18)

3 The Simplicial Rational Bernstein Form

In this section we present our results in the case of rational functions. Throughout
this section we assume that p and q are polynomials of degree less than or equal
to l with Bernstein coefficients bα(p , k ,∆) and bα(q , k ,∆), |α| = k , respectively, over
the standard simplex∆, where l ≤ k . We also assume that all Bernstein coefficients
bα(q , k ,∆) have the same sign and are non-zero (this implies that q (x) 6= 0, for all
x ∈ ∆) and without loss of generality we may assume that all of them are positive.
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For the negative case replace q by −q . The following theorem provides bounds for
the range of f := p

q
over∆. We use the notation

bα( f , k , V ) :=
bα(p , k , V )
bα(q , k , V )

for all α, |α|= k .

Theorem 3. [13, Theorem 3.1, Remark 6] The range of f over∆ can be bounded by

min
|α|=k

bα( f , k ,∆)≤ f (x)≤max
|α|=k

bα( f , k ,∆), x∈∆. (19)

We now extend results from the polynomial to the rational case.

Theorem 4. The equality holds in the right inequality in (19) if and only if

max
|α|=k

bα( f , k ,∆) =bα∗ ( f , k ,∆) for some α∗ = k ei 0 i 0 ∈ {0, . . . , n} . (20)

A similar statement holds for the equality in the left inequality.

Proof. Put M :=maxx∈∆ f (x). Suppose that the equality holds in the right inequal-
ity of (19). Then there exists x∗ ∈ ∆ and α∗ with |α∗| = k such that f (x∗) = M =
max|α|=k bα( f , k ,∆) = bα∗ ( f , k ,∆). Hence s (x) := p (x) −Mq (x) ≤ 0 for all x ∈ ∆,
bα(s , k ,∆) ≤ 0 for all α with |α| = k (by linearity of the Bernstein coefficients), and
s (x∗) = 0. By Propositions 1 (iii) and 2 there exists i 0 ∈ {0, . . . , n} such that α∗ = k ei 0

and s (x∗) = bα∗ (s , k ,∆) = 0. By linearity, bα∗ (p , k ,∆) =Mbα∗ (q , k ,∆). Hence the first
implication follows. The converse holds by Proposition 1 (i). �

Theorem 5. The upper bounds decrease monotonically

max
|β |=k+1

bβ ( f , k +1,∆)≤max
|α|=k

bα( f , k ,∆). (21)

Proof. Put

M (k ) :=max
|α|=k

bα( f , k ,∆), and s (x) := p (x)−M (k )q (x).

Then by the linearity of the Bernstein coefficients, we have for all β with |β |= k +1

bβ (s , k +1,∆) ≤ max
|β |=k+1

(bβ (p , k +1,∆)−M (k )bβ (q , k +1,∆))

≤ max
|α|=k
(bα(p , k ,∆)−M (k )bα(q , k ,∆))≤ 0.

The second inequality follows by application of Proposition 3 to the polynomial s
and the last inequality is a consequence of the definition of M (k ). This implies

bβ (p , k +1,∆)≤M (k )bβ (q , k +1,∆)

from which the result follows. �

Now we turn to the convergence of the bounds for the range of rational functions
provided by the Bernstein coefficients under degree elevation and subdivision.
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Theorem 6. For l < k it holds that

max
|α|=k

bα( f , k ,∆)−max
x∈∆

f (x)≤
A1

k −1
, (22)

where

A1 :=
n (n +2)l (l −1)

24B1
(||Ï2b (p , l ,∆)||∞+max

|α|=l
|bα( f , l ,∆)| ||Ï2b (q , l ,∆)||∞) (23)

and B1 :=min|α|=l bα(q , l ,∆).

Proof. The proof follows by using Corollary 1 and arguments similar to that given in
the proof of the following theorem. �

Remark 1. For any 0<εwe can guarantee that

max
|α|=k

bα( f , k ,∆)−max
x∈∆

f (x)<ε

if we choose A1

ε
+1< k .

The last theorem shows that the convergence of the bounds to the range is only
linear (in k ) if we elevate the degree. Instead, if we subdivide ∆ we obtain quadratic
convergence with respect to the maximum diameter of the subsimplices.

Theorem 7. Let∆=V 1∪ . . .∪V σ be a subdivision of the standard simplex∆ and h be
an upper bound on the diameters of the V i ’s. Then we have

max
|α|=k ,

i=1,...,σ

bα( f , k , V i )−max
x∈∆

f (x)≤ h2A2, (24)

where

A2 := k
n 2(n +1)(n +2)2(n +3)

576B1
(||Ï2b (p , k ,∆)||∞+ B2||Ï2b (q , k ,∆)||∞), (25)

B1 is given in Theorem 6, and B2 := max|α|=k |bα(p ,k ,∆)|
B1

.

Proof. Suppose that max |α|=k ,
i=1,...,σ

bα( f , k , V i ) is attained at bα∗ ( f , k , V i 0 ) with |α∗| = k ,

i 0 ∈ {1, . . . ,σ}. Then

max
|α|=k ,

i=1,...,σ

bα( f , k , V i )−max
x∈∆

f (x)≤bα∗ ( f , k , V i 0 )−max
x∈V i 0

f (x)

≤
�

�

�

�

�

p (vα∗ (k , V i 0 ))−bα∗ (p , k , V i 0 )
�

−bα∗ ( f , k , V i 0 )
�

q (vα∗ (k , V i 0 ))−bα∗ (q , k , V i 0 )
�

q (vα∗ (k , V i 0 ))

�

�

�

�

≤
|p (vα∗ (k , V i 0 ))−bα∗ (p , k , V i 0 )|+ |bα∗ ( f , k , V i 0 )||q (vα∗ (k , V i 0 ))−bα∗ (q , k , V i 0 )|

|q (vα∗ (k , V i 0 ))|
≤ h2A2,



Convergence of the Simplicial Rational Bernstein Form: J. Titi et al. 9

where the second inequality follows since vα∗ (k , V i 0 ) is a grid point in V i 0 , the third
follows by using the triangle inequality, and the fourth is a consequence of Theorem
2 and the fact that the Bernstein coefficients of a polynomial over V i 0 are contained
in the interval spanned by the Bernstein coefficients over∆. �

We conclude the paper with a lower bound on the number of subdivision steps
needed in order to obtain a tolerance ε > 0 between the maximum of the Bernstein
coefficients of the given rational function over the subsimplices and its maximum
over∆. Before we present our result we need the following definition.

Definition 6. [12, Definition 5.5] Let V be a non-degenerate simplex of Rn , S(V ) be a
subdivision of the simplex V , i.e., S(V ) = (V 1, . . . , V σ)with V =V 1 ∪ . . .∪V σ.

– By m (S(V )) the largest diameter of the subsimplices V i is denoted.
– The subdivision scheme S is said to have a shrinking factor C , 0 ≤ C ≤ 1, if for

every simplex V ,

m (S(V ))≤C m (V ). (26)

Theorem 8. Let S be a subdivision scheme with shrinking factor C , 0<C < 1. Then

max
|α|=k ,

i=1,...,σ

bα( f , k , V i )−max
x∈∆

f (x)<ε, (27)

if
ln ε

2A2

2 lnC
<N , where A2 is given in Theorem 7.

Proof. For any 0< ε take N such that 2C 2N A2 < ε. By using Definition 6 and the fact
that m (∆) =

p
2 we may choose h =

p
2C N . Hence by using Theorem 7 and 0<C < 1

the result follows. �
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