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Abstract. Bernstein polynomials on a simplex V are considered. The expan-
sion of a given polynomial p into these polynomials provides bounds for the
range of p over V. Bounds for the range of a rational function over V can easily
obtained from the Bernstein expansions of the numerator and denominator
polynomials of this function. In this paper it is shown that these bounds con-
verge monotonically and linearly to the range of the rational function if the
degree of the Bernstein expansion is elevated. If V is subdivided then the con-
vergence is quadratic with respect to the maximum of the diameters of the
subsimplices.
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1 Introduction

During the last decade, polynomial minimization over simplices has attracted the in-
terest of many researchers, see [1, 2], [4], [6-12]. Special attention was paid to the use
of the expansion of the given polynomial into Bernstein polynomials over a simplex,
the so-called simplicial Bernstein expansion, [2], [4], [8], [10-12]. In [10-12], R. Leroy
gave results on degree elevation and subdivision of the underlying simplex of this ex-
pansion. In [13] the Bernstein form of a polynomial over a box, the so-called tensorial
Bernstein form, was used to find an enclosure of the range of a given (multivariate)
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rational function over a box. Convergence properties of this tensorial rational Bern-
stein form were investigated in [5]. In this paper we present convergence properties
of the corresponding simplicial rational Bernstein form based on Leroy’s results.
The organization of our paper is as follows: In the next section we briefly recall the
simplical polynomial Bernstein form and its basic properties, e.g., their range en-
closing property. We also provide additional properties like sharpness, monotonicity,
and convergence of the bounds which will be used later on. In Section 3 we present
our main results, viz. convergence properties of the simplicial rational Bernstein
form.

With the exception of the range enclosing property of the polynomial and ratio-
nal forms, we state the results in each case only for the maximum of the quantities
under consideration because the respective statements for the minimum are analo-
gous.

2 Bernstein Expansion over a Simplex

In this section we present firstly the most important and fundamental properties of
the Bernstein expansion over a simplex we will employ throughout the paper.

We follow the notation and definitions that have been used in [11], [12]. Firstly,
we recall the definition of a simplex.

Definition 1. Let vy,...,v, be n+ 1 points of R". The ordered list V = [v,...,v,] is
called simplex of vertices vy, ..., v,. The realization |V| of the simplex V is the set of
R” defined as the convex hull of the points v, ...,v,. The diameter of V is the length
of the largest edge of |V|.

Throughout our paper we will assume that the points vy, ..., v, are affinely indepen-
dent in which case the simplex V is non-degenerate. We will often consider the sim-
plex A:=10,e,...,e,], called the standard simplex, where 0 is the zero vector in R”
and e; is the i'" vector of the canonical basis of R”, i =1,..., n. This is no restriction
since any simplex V in R" can be mapped affinely upon A.

Recall that any vector € R” can be written as an affine combination of the ver-
tices vy, ..., v, with weights Ay, ..., A, called barycentric coordinates. If £ = (x3, ..., x,)
€A, thenA=(2g,...,An)=(1= X1 X1, X1,...,Xn).

For every multi-index a = (ay, ..., @,) €Nl and A = (A, ..., A,) € R**! we write
la| :=ao+...+a, and A% := ]_[:lzo A$".The relation < on N"*! is understood entrywise.
For @, f € N**1 with f < a we define

n
AN a i)
()10
If k is any natural number such that |a| = k, we use the notation (l; )= ﬁ

Definition 2. [3, Section 8] Let k be a natural number. The Bernstein polynomials of
degree k with respect to V are the polynomials (BX)y ¢, where

BF:= (k)z“. 1
a
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The Bernstein polynomials of degree k with respect to V take nonnegative values
onVandsumuptol:1=3 _, BE.
Let p be a polynomial of degree [,

plx)= Z aﬁmﬁ.
1BI<l

Since the Bernstein polynomials of degree k form a basis of the vector space
R [X] of polynomials of degree at most k, see, e.g, [10, Proposition 1.6], p can be
uniquely expressed as (I < k)

p(x)=>_ ba(p,k,V)BL. @)
lal=k

The numbers b,(p, k, V) are called the Bernstein coefficients of p of degree k with
respect to V.If V = A, we obtain by multinomial expansion the following representa-
tion of the Bernstein coefficients in terms of the coefficients of p (|a|=k)

()
bulp,k,2)=)_ L=ap. )
B<a (ﬁ)
It is easy to see from (3) that the Bernstein coefficients are linear with respect to p.

Definition 3. Let V =[w,...,v,] be a non-degenerate simplex of R" and p € R;[X].

— Thegrid points of degree k associated to V are the points (|a| = k)

1
Uy(k,V):= E(ao v+...+a, v, eR. 4

— The control points associated to p of degree k with respect to V are the points
(va(k, V), ba(p, k, V)) €R .
The set of control points of p forms its control net of degree k.

— The discrete graph of p of degree k with respect to V is formed by the collection

(va(k, V), p(va(k, V)))ai=k-
In the sequel, (ey,..., ;) denotes the standard basis of R"+1,
Proposition 1. [11, Proposition 2.7] For p € R;[X] the following properties hold.
(i) Interpolation at the vertices:
bre,=p(v;), 0<i<m; (5)

(i) convex hull property: the graph of p over V is contained in the convex hull of its
associated control points;
(iii) range enclosing property:

al= al=
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The following proposition gives necessary and sufficient conditions when equal-
ity holds in (6).

Proposition 2. Letp € R;[X]. Then

max p(x) = maxby(p, k, A) (7)
TEA |al=k
ifand only if
lm‘aiccba(p, k,A)=by(p, k,A) for somea*=ke;,, ip<€{0,...,n}. 8)
al=

A similar statement holds for the minimum.

Proof. Without loss of generality we consider the standard simplex (of dimension
n). If the maximum is attained at an index ke;, then the statement holds trivially by
Proposition 1 (i). Conversely, suppose first that the b, (p, k, A) are equal for all |a| = k.
Then the statement is trivial. Otherwise not all b,(p, k, A) are equal. Suppose that the
maximum of p(x) occurs at * € A with barycentric coordinates A* . If * is in the
interior of A then 0 < BX(4*) < 1 for all |a| = k and hence

p(x") =D balp, k, A)BE(AY)
lal=k
k()
< ﬁllgba(P,k,A)lgc B, (4 )—lréll'gc(ba(p,k,A),

a contraction. If * is lying on the boundary of A then it is contained in a subsim-
plex of dimension n —1, A’ say. The Bernstein coefficients of p over A’ coincide with
the respective coefficients contained in the part of the array (by(p, k,4), |a| = k)
between the (extreme) coefficients associated with the vertices of A’ according to
(5). Now we can apply the arguments used above to A’. Continuing in this way of
examining all possible cases, we decrease the dimension of the simplices to be in-
vestigated step by step and arrive finally at the situation in which x* is a vertex of A
which completes the proof. O

Recall that the barycentric coordinates can be written in terms of the compo-
nents of the variable € R”. By multiplying both sides of (2) with 1 = Z?:O Ai =
1- Z?zl x,-)-i-zl'.l:l x; and rearranging the result we obtain, see also [10, Proposition
1.12],

p@)= D bs(p,k+1,V)B™, ©)
|Bl=k+1
where
1 n
bﬁ(p' k +1, V) = ba+el(pr k +1, V) = k_-H_ Z aiba+e1—ei(pr k; V)
i=0, i#l
+1
+ A2 bu(p. ke, V). (10)

k+1



Convergence of the Simplicial Rational Bernstein Form: J. Titi et al. 5

It is easy to see from (10) that the coefficients bg(p, k + 1, V) are convex combi-
nations of the coefficients b,(p, k, V). Hence the upper bounds decrease monotoni-
cally.

Proposition 3. Letp € R;[X]. Then it holds that

bg(p, k+1,V)< bo(p, k, V). 11
V}E% s(p, k+1,V) max (p ) (1)

In order to relate the control net and the discrete graph of a given polynomial, R.
Leroy [11], [12] suggested to use the so-called second differences which are given in
the following definition.

Definition 4. Let V = [w,...,v,] be a non-degenerate simplex of R". For |y| =k —2
and 0 <i < j < n, define the second differences of p of degree k with respectto V as

v? byij(p, k,V):=Dyieite;, + Dyverte; — Dytei ey — Dyverte;
with the convention e_, = e,. The second differences constitute the collection
V2b(p, k, V):=(V*by,i (P, ky V))iyi=k—2,0<i<j<n- (12)
The maximum of the second differences, i.e.,

||V2b(l9, kr V)HOO = h/l:k—lgloa;(i<j5n |V2by,i,j(l7» k) V)'! (13)
will play an important role in the subsequent convergence analysis.

The following theorem gives the convergence of the control net to the discrete
graph of a given polynomial with respect to degree elevation. Since any simplex can
be mapped upon the standard simplex by an affine transformation, we present the
following statements only for A.

Theorem 1. [12, Theorem 4.2] Letp € R;[X] and l < k. Then

n(n+2)I(1—1)

2
24(k_1) ||V b(p’l’A)”oo (14)

E}g|p(va(k,A))— ba(p, k,A)| <

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. Letp €R;[X]. Ifl <k, then

T
_ <
gg}kiba(p,k,ﬂ) Iclcleafp(m)_ =1 (15)
where
nn+2)I(l-1
1= MDD [v*b(p,1,2)|,, - (16)

24
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Proof. Assume that the maximum of (by(p, k.A)) such that |a| = k is attained at
bo+(p, k,A). Then we have

maxby(p, k,A)—maxp(x) < be:(p, k, A)— p(vy)
lal=k xTEA

T

< .
T k-1

= |ba(p, k, 4) = p(ve:)

The second inequality follows since v, is a grid point in A, while the last inequality
follows by using Theorem 1.

Definition 5. Let V = [w,...,v,] be a non-degenerate simplex of R" andv € R". The
simplices V' generated by subdivision with respect to the point v are defined as

i._ / 7
V= [UOJ-H)Ui—lrvyvi+lr---yvn]) 0<i<n.

Assume that A has been subdivided with respect to a point ¥ in A, A= V1u...u
V7 say. By using [12, Algorithm 4.6 (de Casteljau)] it is easy to see that the Bernstein
coefficients of p over any V' are contained in the interval [minjg =k ba(p, k, A),
maxiq=k be(p, k,A)],1 <i <0, see[12, Remark4.7]. The following theorem gives the
convergence of the control net to the discrete graph with respect to subdivision.

Theorem 2. [12, Theorem 4.9] Let A= V' U...U VY be a subdivision of the standard
simplex A and h be an upper bound on the diameters of the Vi's. Then, for each i €
i1,...,0} and|a| =k, we have

n?(n+1)(n+22(n+3)
576

Ip(walk, V1)) = ba(p, k, V)| < H*k IV2b(p, k, A)lloo-

The following corollary can similarly be proven as Corollary 1.

Corollary 2. Letp €R;[X], A= V'U...UV? be a subdivision of the standard simplex
A and h be an upper bound on the diameters of the Vi's. Then

max bu(p, k, V') —maxp(x) < h*T, 17
|a|=k, TEA
i=1,..,0
where
n?(n+1)(n+2%(n+3)
e e L w

3 The Simplicial Rational Bernstein Form

In this section we present our results in the case of rational functions. Throughout
this section we assume that p and g are polynomials of degree less than or equal
to [ with Bernstein coefficients b,(p, k, A) and by(q, k, A), |a| = k, respectively, over
the standard simplex A, where I < k . We also assume that all Bernstein coefficients
bq(q, k, A) have the same sign and are non-zero (this implies that g(x) # 0, for all
x € A) and without loss of generality we may assume that all of them are positive.
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For the negative case replace g by —q. The following theorem provides bounds for
the range of f := 5 over A. We use the notation

bll(p’k) V)

——— forall a, |a|=k.
ba(q,k,v) | |

bo(f, k, V)=

Theorem 3. [13, Theorem 3.1, Remark 6] The range of f over A can be bounded by

lrrllillgba(f,k,A)Sf(:c)S‘H‘lgl?ba(f,k,A), TEA. 19)

We now extend results from the polynomial to the rational case.

Theorem 4. The equality holds in the right inequality in (19) if and only if

ma)k(ba(f, k,A)=by(f, k,A) for some a*=ke;, ip €10,...,n}. (20)
al=

A similar statement holds for the equality in the left inequality.

Proof. Put M := maxgze f(x). Suppose that the equality holds in the right inequal-
ity of (19). Then there exists * € A and a* with |a*| = k such that f(z*) = M =
maxiq—k ba(f, k,A) = be(f, k,A). Hence s(x) := p(x) — Mq(x) < 0 for all x € A,
bu(s, k,A) < 0 for all @ with |a| = k (by linearity of the Bernstein coefficients), and
s(x*) = 0. By Propositions 1 (iii) and 2 there exists iy € {0,..., n} such that o* = ke;,
and s(x*) = by+(s, k, A) = 0. By linearity, bo+(p, k, A) = Mby(q, k, A). Hence the first
implication follows. The converse holds by Proposition 1 (i). O

Theorem 5. The upper bounds decrease monotonically

be(f, k+1,A)< bo(f, k, A). 21
Anax s(fik+1,4) max ol f ) 21

Proof. Put

M®) = maxhq(f,k, 4), and s(@):=p(=)- MBq().
al=

Then by the linearity of the Bernstein coefficients, we have for all § with |f|=k +1
bp(s, k+1,4) < lﬂrlggl(bﬁ(p, k+1,4)—M%bg(q,k+1,4))

< max(ba(p, k,A)—M%b,(q,k, A) <o0.

The second inequality follows by application of Proposition 3 to the polynomial s
and the last inequality is a consequence of the definition of M), This implies

bp(p, k+1,4)< MPbg(q,k+1,4)
from which the result follows. O

Now we turn to the convergence of the bounds for the range of rational functions
provided by the Bernstein coefficients under degree elevation and subdivision.
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Theorem 6. Forl < k it holds that

Ay
‘rggicba(f,k,A)—rg&xf(w)s 1’ (22)
where
nn+2)I(l-1
A= PO 000 1 A+ maxiba(f, LAY 192000, L A)lle)  23)

24B; lal=1
and B, :=miny—; bs(q, 1, A).

Proof. The proof follows by using Corollary 1 and arguments similar to that given in
the proof of the following theorem. O

Remark 1. For any 0 < € we can guarantee that

maxb,(f, k,A)—max f(x)<e€
lal=k TEA

if we choose % +1<k.

The last theorem shows that the convergence of the bounds to the range is only
linear (in k) if we elevate the degree. Instead, if we subdivide A we obtain quadratic
convergence with respect to the maximum diameter of the subsimplices.

Theorem 7. Let A= V'U...UV? bea subdivision of the standard simplex A and h be
an upper bound on the diameters of the V''s. Then we have

max b,(f, k, V') —max f(x) < h*A,, (24)
|a|=k, xreA
i=1,..,0
where
n?n+1(n+22%n+3
A= kIS BOE) 0, b, A+ Bullo?bla K, M), (25)
1

B, is given in Theorem 6, and B, := %M.
Proof. Suppose that max |q=k, be(f, k, V?) is attained at bg(f, k, Vi) with |a*| = k,
i=1,...,0

1=l1,...,
ip€f{l,...,o}. Then

max bu(f, k, V') —max f(z) < be(f, k, V) — max f(x)
lal=k, xTEA xeVio
i=1,...,.0

[p(va*(k’ Viﬂ)) - ba*(p» k’ Viﬂ)] - ba*(f’ k’ Vio) [Q(Ua*(k, Viﬂ))_ ba*(q! kv Vio)]
q(ves(k, Vo))

< P (k, V) = bee (p, k, Vo)l + b (f, K, VO)llg (0 (K, VI0)) — bar(q, K, V)

- lq(ve:(k, Vo))

<

S thZ)
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where the second inequality follows since v,+(k, Vi0) is a grid point in Vi, the third
follows by using the triangle inequality, and the fourth is a consequence of Theorem
2 and the fact that the Bernstein coefficients of a polynomial over Vi are contained
in the interval spanned by the Bernstein coefficients over A. O

We conclude the paper with a lower bound on the number of subdivision steps
needed in order to obtain a tolerance € > 0 between the maximum of the Bernstein
coefficients of the given rational function over the subsimplices and its maximum
over A. Before we present our result we need the following definition.

Definition 6. [12, Definition 5.5] Let V be a non-degenerate simplex of R", S(V) be a
subdivision of the simplex V, i.e., S(V)=(V1,..., Vo) with V=V'U...u VY.

— By m(S(V)) the largest diameter of the subsimplices V' is denoted.
— The subdivision scheme S is said to have a shrinking factor C, 0 < C < 1, if for
every simplex V,

m(S(V)) < Cm(V). (26)
Theorem 8. Let S be a subdivision scheme with shrinking factor C,0 < C < 1. Then

max bq(f, k, V') —max f(x) <e, @27)
|a|=k, xrEA

In &
. 2A. . . .
if ,& <N, where A, is given in Theorem 7.

Proof. For any 0 < € take N such that 2C?N A, < €. By using Definition 6 and the fact
that m(A) = v/2 we may choose h = v2CV. Hence by using Theorem 7 and 0 < C < 1
the result follows. O
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