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We consider classes of n-by-n sign regular matrices, i.e. of matrices with the
property that all their minors of fixed order k have one specified sign or are
allowed also to vanish, k = 1, . . . , n. If the sign is nonpositive for all k, such
a matrix is called totally nonpositive. The application of the Cauchon algorithm
to nonsingular totally nonpositive matrices is investigated and a new determi-
nantal test for these matrices is derived. Also matrix intervals with respect to
the checkerboard ordering are considered. This order is obtained from the usual
entry-wise ordering on the set of the n-by-n matrices by reversing the inequality
sign for each entry in a checkerboard fashion. For some classes of sign regular
matrices, it is shown that if the two bound matrices of such a matrix interval are
both in the same class then all matrices lying between these two bound matrices
are in the same class, too.

Keywords: sign regular matrix; totally nonnegative matrix; totally nonpositive
matrix; Cauchon algorithm; checkerboard ordering; matrix interval
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1. Introduction

A real matrix is called sign regular and strictly sign regular if all its minors of the same
order have the same sign or vanish and are nonzero and have the same sign, respectively.
Sign regular matrices have found a wide variety of applications in approximation theory,
computer-aided geometric design,[1] numerical mathematics and other fields. If the sign
of all minors of any order is nonnegative (nonpositive), then the matrix is called totally
nonnegative (totally nonpositive). Totally nonnegative matrices arise in a variety of ways
in mathematics and its applications. For background information, the reader is referred to
the monographs.[2,3]

In [4], we apply the Cauchon algorithm [5,6] to totally nonnegative matrices and
prove a long-standing conjecture posed by the second author on intervals of nonsingular
totally nonnegative matrices. The underlying ordering is the checkerboard ordering which
is obtained from the usual entry-wise ordering in the set of the square real matrices of
fixed order by reversing the inequality sign for each entry in a checkerboard fashion. In this
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2 M. Adm and J. Garloff

paper, we continue our study of the Cauchon algorithm and apply it to several classes of
sign regular matrices: Firstly, to the nonsingular totally nonpositive matrices for which we
derive a new characterization using the matrix obtained by the Cauchon algorithm and an
efficient determinantal test; we also show that all matrices lying between two nonsingular
totally nonpositive matrices (with respect to the checkerboard ordering) have also this
property (termed interval property henceforth). Secondly, we prove that some other classes
of nonsingular sign regular matrices possess the interval property, too.

The organization of our paper is as follows. In Section 2, we introduce our notation and
give some auxiliary results which we use in the subsequent sections. In Section 3, we recall
from [5,6] the Cauchon algorithm and its inverse, the Restoration algorithm, on which our
proofs heavily rely. In Section 4, we apply the Cauchon algorithm to the nonsingular totally
nonpositive matrices and derive a new characterization and a determinantal test for these
matrices. In Section 5, we give a representation of the entries of the matrix that is obtained
by the Cauchon algorithm when it is applied to a nonsingular totally nonpositive matrix.
In Section 6, we prove the interval property for, e.g. the nonsingular totally nonpositive
matrices and the nonsingular almost strictly sign regular matrices, a class between the sign
regular and the strictly sign regular matrices.

2. Notation and auxilary results

2.1. Notation

We now introduce the notation used in our paper. For κ, n, we denote by Qκ,n the set
of all strictly increasing sequences of κ integers chosen from {1, 2, . . . , n}. We use the
set theoretic symbols ∪ and \ to denote somewhat not precisely but intuitively the union
and the difference, respectively, of two index sequences, where we consider the result-
ing sequences as strictly increasing ordered. Let A be a real n × n matrix. For α =
(α1, α2, . . . , ακ), β = (β1, β2, . . . , βκ) ∈ Qκ,n , we denote by A[α|β] the κ × κ sub-
matrix of A contained in the rows indexed by α1, α2, . . . , ακ and columns indexed by
β1, β2, . . . , βκ . We suppress the brackets when we enumerate the indices explicitly. We
set αα̂i := (α1, . . . , αi−1, αi+1, . . . , ακ) for some i ∈ {1, . . . , κ}. If both α and β are
formed from consecutive indices, we call the minor det A[α | β] contiguous. Let ε =
(ε1, . . . , εn) be a signature sequence, i.e. ε ∈ {1,−1}n . The matrix A is called strictly sign
regular (abbreviated SS R henceforth) and sign regular (abbreviated S R) with signature
ε if 0 < εκ det A[α|β] and 0 ≤ εκ det A[α|β], respectively, for all α, β ∈ Qκ,n, κ =
1, 2, . . . , n. If A is SS R (S R) with signature ε = (1, 1, . . . , 1), then A is called totally
positive (abbreviated T P) ( totally nonnegative (abbreviated T N )). If A is SS R (S R) with
signature ε = (−1,−1, . . . ,−1), then A is called totally negative (abbreviated t.n.) (totally
nonpositive (abbreviated t.n.p.)). If A is in a certain class of S R matrices and in addition
also nonsingular then we affix Ns to the name of the class. We reserve throughout the
notation Tn = (ti j ) for the anti-diagonal matrix with ti j := δn+1−i, j , i, j = 1, . . . , n, and
call A# := Tn ATn the converse matrix of A, see, e.g. [7, p.171], [2, p.34]. We note that if
A is Ns.t.n.p. then so is A#.

We endow Rn,n , the set of the real n × n matrices, with two partial orderings: Firstly,
with the usual entry-wise partial ordering (A = (ai j ), B = (bi j ) ∈ Rn,n)

A ≤ B : ⇔ ai j ≤ bi j , i, j = 1, . . . , n.

The strict inequality A < B is also understood entry-wise.
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Linear and Multilinear Algebra 3

Secondly, with the checkerboard partial ordering, which is defined as follows. Let
S := diag(1,−1, . . . , (−1)n+1) and A∗ := S AS.

Then we define
A ≤∗ B : ⇔ A∗ ≤ B∗.

2.2. Auxiliary results

In this subsection, we introduce briefly some auxiliary results that will be used later.

Lemma 2.1 [8, Lemma 7], [9, Lemma 2.2] Let A = (ai j ) ∈ Rn,n be NsS R with signature
ε = (ε1, . . . , εn). Then the following statements hold.

(i) If ε2 = 1, then ⎧⎨
⎩

aii �= 0, i = 1, . . . , n,

ai j = 0, j < i ⇒ akl = 0 ∀ l ≤ j < i ≤ k,

ai j = 0, i < j ⇒ akl = 0 ∀ k ≤ i < j ≤ l,

which is called a type-I staircase matrix.
(ii) If ε2 = −1, then⎧⎨

⎩
a1n �= 0, a2,n−1 �= 0, . . . , an1 �= 0,

ai j = 0, n − i + 1 < j ⇒ akl = 0 ∀ i ≤ k, j ≤ l,
ai j = 0, j < n − i + 1 ⇒ akl = 0 ∀ k ≤ i, l ≤ j,

which is called a type-II staircase matrix.

Following [8], we call a minor trivial if it vanishes and its zero value is determined
already by the pattern of its zero–nonzero entries. We illustrate this definition by the
following example. Let

A :=
⎛
⎝ ∗ ∗ ∗

0 ∗ 0
0 ∗ ∗

⎞
⎠ ,

where the asterisk denotes a nonzero entry. Then det A[2, 3|1, 2] and det A[1, 2|1, 3] are
trivial, whereas det A and det A[1, 2|2, 3] are nontrivial minors.

Lemma 2.2 [8, p.4183] Let A = (ai j ) ∈ Rn,n be a staircase matrix and let α, β ∈ Qκ,n.
Then A possesses the following properties.

(i) If A is a type-I staircase matrix, then

det A[α | β] is a nontrivial minor ⇔ aα1,β1 · aα2,β2 · · · aακ ,βκ �= 0.

(ii) If A is a type-II staircase matrix, then

det A[α | β] is a nontrivial minor ⇔ aα1,βκ · aα2,βκ−1 · · · aακ ,β1 �= 0.

(iii) A is a type-I staircase matrix if and only if Tn A is a type-II staircase matrix, and

det A[α | β] is a nontrivial minor ⇔ det (Tn A)[α′ | β] is a nontrivial minor,

D
ow

nl
oa

de
d 

by
 [

Ju
er

ge
n 

G
ar

lo
ff

] 
at

 1
4:

23
 2

3 
N

ov
em

be
r 

20
15

 



4 M. Adm and J. Garloff

where α′ ∈ Qκ,n is defined by α
′
i := n − αi + 1, i = 1, . . . , κ .

Now we present the definition of an almost strictly sign regular matrix and give a
characterization for it in the nonsingular case.

Definition 1 [8, Definition 8] Let A ∈ Rn,n and ε = (ε1, . . . , εn) be a signature sequence.

(i) If for all the nontrivial minors

0 < εk det A[α | β] for all α, β ∈ Qk,n, k = 1, . . . , n,

holds, then A is called almost strictly sign regular (abbreviated ASS R) with signa-
ture ε.

(ii) If all the nontrivial minors of A are positive, then A is called almost totally positive
(AT P).

Theorem 2.3 [8, Theorem 10] Let A ∈ Rn,n and ε = (ε1, . . . , εn) be a signature
sequence. Then A is Ns ASS R with signature ε if and only if A is a type-I or type-II
staircase matrix, and for all the nontrivial contiguous minors holds

0 < εk det A[α | β] for all α, β ∈ Qk,n, k = 1, . . . , n.

Lemma 2.4 [8, Lemma 9] Let A ∈ Rn,n be a type-I staircase matrix and ε = (ε1, . . . , εn)

be a signature sequence. Set
r := min

{| j − i | | ai j = 0 for some i, j ∈ {1, . . . , n}} and suppose that 0 < r . If for
all the nontrivial contiguous minors

0 < εk det A[α | β] for all α, β ∈ Qk,n, k = 1, . . . , n,

holds, then
ε2 = ε2

1 , ε3 = ε3
1 , . . . , εn−r+1 = εn−r+1

1 .

Lemma 2.5 [10, Proposition 3.2] If A ∈ Rn,n is Ns.t.n.p. with a11 < 0, then ai j < 0
for all i, j = 1, . . . , n with (i, j) �= (n, n).

Lemma 2.6 [11, Theorem 5] Let A ∈ Rn,n be nonsingular. Then A is t.n.p. if and only
if the following conditions hold

a11, ann ≤ 0; an1, a1n < 0;
det A[α|k + 1, . . . , n] ≤ 0 for all α ∈ Qn−k,n,

det A[k + 1, . . . , n|β] ≤ 0 for all β ∈ Qn−k,n,

det A[k, . . . , n] < 0,

⎫⎬
⎭ for k = 1, . . . , n − 1.

3. Cauchon diagrams and the Cauchon algorithm

In this section, we first recall from [5,6] the definition of a Cauchon diagram and of the
Cauchon algorithm.1 Since we are mainly interested in the case of nonsingular matrices, we
present the algorithm here only for square matrices. The extension to rectangular matrices
will be obvious.
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Linear and Multilinear Algebra 5

Definition 2 An n × n Cauchon diagram C is an n × n grid consisting of n2 squares
coloured black and white, where each black square has the property that either every square
to its left (in the same row) or every square above it (in the same column) is black.

We denote by Cn the set of the n × n Cauchon diagrams. We fix positions in a Cauchon
diagram in the following way: For C ∈ Cn and i, j ∈ {1, . . . , n} , (i, j) ∈ C if the square in
row i and column j is black. Here we use the usual matrix notation for the (i, j) position
in a Cauchon diagram, i.e. the square in (1, 1) position of the Cauchon diagram is in its top
left corner.

Definition 3 Let A ∈ Rn,n and let C ∈ Cn . We say that A is a Cauchon matrix associated
with the Cauchon diagram C if for all (i, j), i, j ∈ {1, . . . , n}, we have ai j = 0 if and only
if (i, j) ∈ C . If A is a Cauchon matrix associated with an unspecified Cauchon diagram,
we just say that A is a Cauchon matrix.

If A is a Cauchon matrix, then we also say that C is the Cauchon diagram associated
to A if A is a Cauchon matrix associated with the Cauchon diagram C .

To recall the Cauchon algorithm, we denote by ≤ and ≤c the lexicographic and colexi-
cographic order, respectively, on N2, i.e.

(g, h) ≤ (i, j) :⇔ (g < i) or (g = i and h ≤ j),

(g, h) ≤c (i, j) :⇔ (h < j) or (h = j and g ≤ i).

Set E◦ := {1, . . . , n}2 \ {(1, 1)}, E := E◦ ∪ {(n + 1, 1)}.
Let (s, t) ∈ E◦ . Then (s, t)+ := min {(i, j) ∈ E | (s, t) ≤ (i, j), (s, t) �= (i, j)}; here

the minimum is taken with respect to the lexicographical order.

Cauchon algorithm Let A ∈ Rn,n . As r runs in decreasing order over the set E , we define
matrices A(r) = (a(r)

i j ) ∈ Rn,n as follows:

(1) Set A(n+1,1) := A.
(2) For r = (s, t) ∈ E◦ define the matrix A(r) = (a(r)

i j ) as follows:

(a) If a(r+)
st = 0, then put A(r) := A(r+).

(b) If a(r+)
st �= 0, then put

a(r)
i j :=

⎧⎪⎨
⎪⎩

a(r+)
i j − a(r+)

i t a(r+)
s j

a(r+)
st

for i < s and j < t,

a(r+)
i j otherwise.

(3) Set Ã := A(1,2) 2; Ã is called the matrix obtained fromA (by the Cauchon algorithm).

The formulae of the Cauchon algorithm allow us to express the entries of A(r) in terms
of A(r+). These expressions also constitute the so-called Restoration algorithm, see, e.g. [5,
Section 3], which is the inverse of the Cauchon algorithm.
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6 M. Adm and J. Garloff

Restoration algorithm Let A ∈ Rn,n . As r runs (in increasing order) over the set E◦, we
define matrices A(r) = (a(r)

i j ) ∈ Rn,n as follows:

(1) Set A(1,2) := A.

(2) For r = (s, t) ∈ E◦ define the matrix A(r+) = (a(r+)
i j ) as follows:

(a) If a(r)
st = 0, then put A(r+) := A(r).

(b) If a(r)
st �= 0, then put

a(r+)
i j :=

⎧⎨
⎩ a(r)

i j + a(r)
i t a(r)

s j

a(r)
st

for i < s and j < t,

a(r)
i j otherwise.

(3) Set Ā := A(n+1,1); Ā is called the matrix obtained from A (by the Restoration
algorithm).

Theorem 3.1 [5, Theorem 4.1] Let A ∈ Rn,n be a nonnegative Cauchon matrix. Then Ā
is T N.

4. Nonsingular totally nonpositive matrices and the Cauchon algorithm

In this section, we apply the Cauchon algorithm to Ns.t.n.p. matrices. Before we present
our results, we first recall two propositions from [5] which relate the determinants of some
special submatrices of the intermediate matrices during the performance of the Restoration
algorithm (or its inverse, the Cauchon algorithm). In the sequel, we use the following
notations.

Let A = (ai j ) ∈ Rn,n and δ = det A[α|β] be a minor of A. If r = (s, t) ∈ E , set

δ(r) := det A(r)[α|β].
For i ∈ α and j ∈ β, set

δ
(r)

î, ĵ
:= det A(r)[αî |β ĵ ].

Proposition 4.1 [5, Proposition 3.7] Let A = (ai j ) ∈ Rn,n and r = (s, t) ∈ E◦. Assume
that ast �= 0. Let δ = det A[α|β] with α, β ∈ Ql,n with (αl , βl) = r . Then δ(r+) = δ

(r)

ŝ t̂
ast

holds.

Proposition 4.2 [5, Proposition 3.11] Let A = (ai j ) ∈ Rn,n and r = (s, t) ∈ E◦. Let
δ = det A[α1, . . . , αl |β1, . . . , βl ] be a minor of A with (αl , βl) < r . If ast = 0, or if αl = s,
or if t ∈ {β1, . . . , βl}, or if t < β1, then δ(r+) = δ(r).

From the last two propositions, we derive a useful representation of the determinant of
a nonsingular matrix.
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Linear and Multilinear Algebra 7

Theorem 4.3 Let A = (ai j ) ∈ Rn,n and assume that ãii �= 0, i = 1, . . . , n. Then it holds
that

det A = ã11 · · · ãnn . (1)

Proof Since a(n+1,1)
nn = ann = ãnn �= 0 it follows from Proposition 4.1 that

det A = det A(n+1,1) = det A(n,n)[1, . . . , n − 1] · ãnn . (2)

Furthermore, we have

det A(n,n)[1, . . . , n − 1] = det A(n,1)[1, . . . , n − 1] (3)

because the latter submatrix is obtained from the first one by a sequence of adding a scalar
multiple of one column to another column. Now we set r := (n − 1, n); then r+ = (n, 1)

and the application of Proposition 4.2 to det A[1, . . . , n − 1|1, . . . , n] yields

det A(n,1)[1, . . . , n − 1] = det A(n−1,n)[1, . . . , n − 1]. (4)

By assumption a(n−1,n)
n−1,n−1 = ãn−1,n−1 �= 0 holds. Application of Proposition 4.1 to the

matrix A(n−1,n)[1, . . . , n − 1|1, . . . , n] (as matrix A) with r := (n − 1, n − 1) results in

det A(n−1,n)[1, . . . , n − 1] = det A(n−1,n−1)[1, . . . , n − 2] · ãn−1,n−1. (5)

Plugging (5) into (4), the resulting identity into (3), and finally the obtained identity into
(2) gives

det A = det A(n−1,n−1)[1, . . . , n − 2] · ãn−1,n−1 · ãnn .

Continuing in this way, we arrive at (1). �

The statement of Theorem 4.3 remains true if ã11 = 0 and ãi i �= 0 for i = 2, . . . , n
while it fails if we waive the assumption that ãi i �= 0, i = 2, . . . , n. A counterexample is
provided by the matrix

A =
(

0 −1
−1 0

)
.

Now we present the changes in the entries and minors of a given Ns.t.n.p. matrix
with nonzero entry in position (n, n) during running the Cauchon algorithm. By Lemma 2.5
applied to A# all the entries of such a matrix are negative except possibly the entry in position
(1, 1). The following theorem gives the changes for the steps r = (n, n), . . . , (n, 2).

Theorem 4.4 Let A = (ai j ) ∈ Rn,n be Ns.t.n.p. with ann < 0. If we apply the Cauchon
algorithm to A, then we have the following properties:

(i) All entries of A(n,t)[1, . . . , n − 1] are nonnegative for all t = 2, . . . , n.
(ii) A(n,t)[1, . . . , n − 1 | 1, . . . , t − 1] is T N for all t = 2, . . . , n.

(iii) A(n,t)[1, . . . , n − 1] is T N for all t = 2, . . . , n.
(iv) A(n,2)[1, . . . , n − 1] is NsT N.
(v) A(n,2) is a Cauchon matrix.

(vi) For t = 1, . . . , n, det A(n,t)[α | β] ≤ 0 for all α ∈ Ql,n−1, β ∈ Ql,n with βl = n
and l = 1, . . . , n − 1.
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8 M. Adm and J. Garloff

Proof

(i) If t = n then let r = (n, n) and by Proposition 4.1 we have det A(r+)[i, n | j, n] =
det A(r)[i | j] · ann , hence det A[i, n | j, n] = a(r)

i j · ann . Since A is t.n.p. and

ann < 0 it follows that 0 ≤ a(r)
i j for all i, j = 1, . . . , n − 1. This proves the case

t = n. Proposition 4.2 implies that det A(r)[i, n | j, h] = det A[i, n | j, h] ≤ 0 for
all h ≤ n −1. In the remaining cases, we proceed by induction and repeat the above
arguments and use the fact that anj < 0 for all j = 1, . . . , n.

(ii) We prove this property only for the case t = n since in the other cases we proceed
by induction and repeat the arguments.
If t = n then by (i) A(n,n)[1, . . . , n − 1] is a nonnegative matrix. It follows from
Proposition 4.1 that

det A[α1, . . . , αk , n | β1, . . . , βk , n] = det A(n+1,1)[α1, . . . , αk , n | β1, . . . , βk , n]
= det A(n,n)[α1, . . . , αk | β1, . . . , βk ] · ann,

for all αk, βk ≤ n − 1. Since A is t.n.p. and ann < 0, we have

0 ≤ det A(n,n)[α1, . . . , αk | β1, . . . , βk].
Hence A(n,n)[1, . . . , n − 1] is T N . This proves the case t = n. For the other cases,
we use the fact that anj < 0 for all j = 1, . . . , n and for βk+1 < n

det A(n,n)[α1, . . . , αk , n | β1, . . . , βk , βk+1] = det A[α1, . . . , αk , n | β1, . . . , βk , βk+1]
which follows by Proposition 4.2.

(iii) We proceed by induction on t (primary induction) and l (secondary induction),
where l is the order of the minors.
The case t = n is a consequence of (ii).
Suppose that A(n,t+1)[1, . . . , n−1] is T N ; we want to show that A(n,t)[1, . . . , n−1]
is T N , i.e. 0 ≤ det A(n,t)[α | β] for all α, β ∈ Ql,n−1.
The case l = 1 is a consequence of (i). So, we assume that 2 ≤ l.
If βl < t , then the statement follows from (ii).
If t < β1 or t is contained in β then by Proposition 4.2, we have

det A(n,t+1)[α | β] = det A(n,t)[α | β]
which implies by the induction hypothesis on t that 0 ≤ det A(n,t)[α | β]. So, it
just remains to consider the case where there exists h, 1 ≤ h ≤ l − 1, such that
βh < t < βh+1.
In order to prove the statement, in this case we simplify the notation and proceed
parallel to the proof given in [5, p.822–823]. We set for α, β ∈ Ql,n

[α | β] := det A(n,t)[α | β], [α | β]+ := det A(n,t+1)[α | β],
and for k ∈ {1, . . . , l}, m ∈ {1, . . . , h},

α(k) := (α1, . . . , α̂k, . . . , αl), β
(m) := (β1, . . . , β̂m, . . . , βl−1),

where the ‘hat’ over an entry indicates that this entry has to be discarded from the
index sequence (note that the sequences α(k) and β(m) have different lengths).
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Linear and Multilinear Algebra 9

By using Muir’s law of extensible minors [12], we have for k = 1, . . . , l

[α(k) | β(m) ∪ {t}] · [α | β] = [α(k) | β(m) ∪ {βl}] · [α | β(m) ∪ {βm, t}]
+ [α(k) | β(m) ∪ {βm}] · [α | β(m) ∪ {t, βl}]. (6)

It follows from the induction on l that the minors [α(k) | β(m) ∪ {t}], [α(k) |
β(m) ∪ {βl}], [α(k) | β(m) ∪ {βm}] are nonnegative. Furthermore, it follows from
Proposition 4.2 that [α | β(m) ∪ {βm, t}] = [α | β(m) ∪ {βm, t}]+ and [α | β(m) ∪
{t, βl}] = [α | β(m) ∪ {t, βl}]+ and so we deduce by the induction on t that the
two minors are nonnegative. Hence all of these inequalities together imply that the
left-hand side of (6) is nonnegative. If 0 < [α(k) | β(m) ∪ {t}] for some k and m,
then 0 ≤ [α | β], as desired. If for all k, m [α(k) | β(m) ∪{t}] = 0 then it follows by
Laplace expansion that [α | β(m) ∪ {βl , t}] = 0. Then by [5, Lemma B.3] we have

det A(n,t+1)[α | β] = det A(n,t)[α | β].
Hence we obtain by induction on t that 0 ≤ det A(n,t)[α | β], as desired. This
completes the induction step for the proof of (iii).

(iv) By (iii) A(n,2)[1, . . . , n − 1] is T N . Similarly as in the proof of Theorem 4.3 we
obtain

det A = det A(n,2)[1, . . . , n − 1] · ann .

Since A is Ns.t.n.p. and ann < 0 we have that 0 < det A(n,2)[1, . . . , n − 1]. Hence
A(n,2)[1, . . . , n − 1] is NsT N .

(v) Since the entries in the last row and last column of A are negative (and are not
changed when running the Cauchon algorithm) and since by (iv) A(n,2)[1, . . . , n−1]
is NsT N , A(n,2) is a Cauchon matrix.

(vi) We prove the statement by induction on l and decreasing induction on t .
The case l = 1 is a consequence of the negativity of the entries in the last column
of A(n,t), t = 2, . . . , n.
If t = n then by Proposition 4.2 we have det A(n,n)[α | β] = det A[α | β] since
βl = n.
Suppose that the statement is true for all minors of order less than l (secondary
induction) and for all t + 1, . . . , n (primary induction).
If t < β1 or t = βh for some h = 1, . . . , l then by Proposition 4.2 we have
det A(n,t+1)[α | β] = det A(n,t)[α | β], and by the induction hypothesis on t we are
done.
If βh < t < βh+1 for some h = 1, . . . , l − 1 then we consider again (6).
The minors [α(k) | β(m) ∪ {t}], [α | β(m) ∪ {βm, t}], [α(k) | β(m) ∪ {βm}] are
nonnegative by (iii), [α(k) | β(m) ∪ {βl}] is nonpositive by the induction hypothesis
on l, [α | β(m) ∪ {t, βl}] = [α | β(m) ∪ {t, βl}]+ by Proposition 4.2, and by the
induction hypothesis on t the latter minor is nonpositive. All of these inequalities
yield

[α(k) | β(m) ∪ {t}] · [α | β] ≤ 0.

If 0 < [α(k) | β(m) ∪ {t}] for some k and m, then we have [α | β] ≤ 0, as desired.
If for all k, m [α(k) | β(m) ∪ {t}] = 0, then proceeding parallel to the last part of
(iii) we get

det A(n,t+1)[α | β] = det A(n,t)[α | β].
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10 M. Adm and J. Garloff

Hence by the induction hypothesis on t , we obtain det A(n,t)[α | β] ≤ 0, as
desired. �

By sequentially repeating the steps of the proof of Theorem 4.4, we obtain the following
theorem.

Theorem 4.5 Let A = (ai j ) ∈ Rn,n be Ns.t.n.p. with ann < 0. Then it holds that

(i) A(s,t)[1, . . . , s − 1|1, . . . , t − 1] is T N for all s, t = 2, . . . , n.
(ii) A(s,2)[1, . . . , s − 1] is NsT N for all s = 2, . . . , n.

(iii) Ã[1, . . . , n − 1] is a nonnegative matrix.
(iv) Ã is a Cauchon matrix.

Inspection of the proofs of Theorems 4.4 and 4.5 shows that the nonsingularity assump-
tion is only needed for the nonsingularity statements in Theorems 4.4 (iv) and 4.5 (ii). In
the following corollary, we present the weakened version of Theorems 4.5. and 4.4 may be
weakened accordingly.

Corollary 4.6 Let A ∈ Rn,n have all the entries in its bottom row negative and let A
be a t.n.p. matrix. Then it holds that

(i) A(s,t)[1, . . . , s − 1|1, . . . , t − 1] is T N for all s, t = 2, . . . , n.
(ii) Ã[1, . . . , n − 1] is a nonnegative matrix.

(iii) Ã is a Cauchon matrix.

In the next section, we will make use of the following proposition and theorem.

Proposition 4.7 Let A = (ai j ) ∈ Rn,n be t.n.p. with ann < 0. Then A is nonsingular if
and only if 0 < ãi i , i = 1, . . . , n − 1.

Proof Let A be Ns.t.n.p. with ann < 0. By Theorem 4.5, A(s,2)[1, . . . , s − 1] is NsT N
and therefore possesses only positive principal minors, e.g. [3, Theorem 1.13]. In par-
ticular, 0 < a(s,2)

s−1,s−1 = ãs−1,s−1, s = 2, . . . , n. The converse direction follows from
Theorem 4.3. �

The following theorem provides necessary and sufficient conditions for a given matrix
whose entries are all negative except possibly the (1, 1) entry which is nonpositive to be
Ns.t.n.p. using the Cauchon algorithm.

Theorem 4.8 Let A = (ai j ) ∈ Rn,n have all entries negative except possibly a11 ≤ 0.
Then the following two properties are equivalent.

(i) A is a Ns.t.n.p. matrix.
(ii) Ã is a Cauchon matrix and Ã[1, . . . , n − 1] is a nonnegative matrix with positive

diagonal entries.
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Linear and Multilinear Algebra 11

Proof The implication (i) ⇒ (ii) follows by Theorem 4.5 and Proposition 4.7.
(ii) ⇒ (i): By Proposition 4.7, A is nonsingular with det A < 0 since 0 < ãi i , i =

1, . . . , n − 1, and ann < 0. Ã(n,n) is the matrix that we obtain after running the Restoration
algorithm applied to Ã with r = (n, n−1). By the definition of the Restoration algorithm, the
entries of Ã(n,n)[1, . . . , n − 1] are nonnegative .3 Note that if in step 2(b) in the Restoration
algorithm s = n or t = n then the negativity of ã(r)

nj and ã(r)
nt and of ã(r)

in and ã(r)
sn , respectively,

results in a nonnegative value of the quotient. In the proof of Theorem 3.1 given in [5,
Theorem 4.1], it is shown that if N ∈ Rn,n is a nonnegative Cauchon matrix then

0 ≤ det N (r)[α|β] for all α, β ∈ Ql,n with (αl , βl) ≤ r. (7)

Again this result carries over to Ã(r) provided that αl , βl < n, irrespectively of the negativity
of the entries in the last column and row of Ã as long as r < (n, n).

Now let 2 ≤ l, α, β ∈ Ql,n with αl = n and put t := βl , r := (n, t). It follows from
Proposition 4.1 that for δ = det Ã[α|β]

det Ã(r+)[α|β] = δ(r+) = δ
(r)

n̂t̂
ãnt = δ

(r)

n̂t̂
ant . (8)

By (7), we have 0 ≤ δ
(r)

n̂t̂
, whence by (8) det Ã(r+)[α|β] ≤ 0. By ¯̃A = A and by repeated

application of Proposition 4.2 we obtain

det A[α|β] ≤ 0 for all α, β ∈ Ql,n with αl = n. (9)

Similarly we can prove that

det A[α|l, . . . , n] ≤ 0 for all α ∈ Qn−l+1,n, l = 2, . . . , n. (10)

Finally, since the result of the Cauchon algorithm applied to A[l, . . . , n] coincides with
Ã[l, . . . , n] Theorem 4.3 implies that

det A[l, . . . , n] = ãll · · · ãnn < 0, l = 1, . . . , n. (11)

By the condition on the sign of the entries of A and (9)–(11) it follows from Lemma 2.6
that A is Ns.t.n.p. �

If A ∈ Rn,n is Ns.t.n.p. with ann = 0 replace in Theorem 4.8 A by B := AG,
B = (bi j ), where G = (gi j ) ∈ Rn,n is the matrix defined by gii := 1, i = 1, . . . , n,
gn−1,n := 1 and all other entries are 0. Then bnn < 0 and A is Ns.t.n.p. if and only if B is
Ns.t.n.p., see, e.g. [13, proof of Theorem 3.1]. Hence A is Ns.t.n.p. if and only if B̃ is a
Cauchon matrix and B̃[1, . . . , n −1] is a nonnegative matrix with positive diagonal entries.

If in the proof of Theorem 4.8 0 < N then (7) holds with the strict inequality. Combining
this with a necessary and sufficient condition for a matrix to be t.n. [14, Theorem 6] we
obtain by a similar proof the following corollary.

Corollary 4.9 Let A ∈ Rn,n and A < 0. Then the following properties are equivalent:

(i) A is t.n.,
(ii) 0 < Ã[1, . . . , n − 1].
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12 M. Adm and J. Garloff

By proceeding similarly as in the proof of Theorem 4.8 and using [15, Proposition 3.1]
instead of Lemma 2.6, we obtain the following corollary.

Corollary 4.10 Let A = (ai j ) ∈ Rn,m (with n ≤ m) have all its entries negative except
possibly a11 ≤ 0. Then the following two properties are equivalent:

(i) A is a t.n.p. matrix and A[1, . . . , n | m − n + 1, . . . , m] is nonsingular.
(ii) Ã is a Cauchon matrix, Ã[1, . . . , n − 1 | 1, . . . , m − 1] is a nonnegative matrix,

and Ã[1, . . . , n − 1 | m − n + 1, . . . , m − 1] has positive diagonal entries.

We conclude this section with an efficient determinantal test to check whether a given
matrix is nonsingular totally nonpositive or not.

We firstly recall from [6] the definition of a lacunary sequence.

Definition 4 Let C ∈ Cn . We say that a sequence

γ := ((ik, jk), k = 0, 1, . . . , p) (12)

which is strictly increasing in both arguments is a lacunary sequence with respect to C if
the following conditions hold:

(1) (ik, jk) /∈ C , k = 1, . . . , p;
(2) (i, j) ∈ C for i p < i ≤ n and jp < j ≤ n.
(3) Let s ∈ {0, . . . , p − 1}. Then (i, j) ∈ C if

(i) either for all (i, j), is < i < is+1 and js < j ,
(ii) or for all (i, j), is < i < is+1 and j0 ≤ j < js+1

and

(iii) either for all (i, j), is < i and js < j < js+1,
(iv) or for all (i, j), i < is+1, and js < j < js+1.

In [6, Proposition 4.1], the conclusion from hypothesis (b) therein depends only on the
zero–nonzero values (and not on the positivity) of the involved determinants. Therefore, we
obtain the following proposition (which we formulate for later use in the rectangular case).

Proposition 4.11 Let A ∈ Rn,m and C be an n×m Cauchon diagram. For each position
in C fix a lacunary sequence γ given by (12) (with respect to C) starting at this position.
Assume that for all (i0, j0), we have 0 = det A[i0, . . . , i p| j0, . . . , jp] if and only if (i0, j0) ∈
C. Then

det A[i0, . . . , i p| j0, . . . , jp] = ãi0, j0 · ãi1, j1 · · · ãi p, jp (13)

for all lacunary sequences γ given by (12).

As in [16], we relate to each entry ãi0, j0 of Ã a sequence γ given by (12). It is sufficient
to describe the construction of the sequence from the starting pair (i0, j0) to the next pair
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Linear and Multilinear Algebra 13

(i1, j1) with 0 < ãi1, j1 (δi1, j1 < 0, see below) if i1, j1 < n since for a given matrix A
the determinantal test is performed by moving row by row from the bottom to the top row.
Once we have found the next index pair (i1, j1) we append to (i0, j0) the sequence starting
at (i1, j1). By construction, the sequence γ is uniquely determined.

In the sequel let δi j := det A[i0, i1, . . . , i p | j0, j1, . . . , jp] be the minor of A associated
to the sequence γ given by (12) according to (13) which starts at position (i, j) = (i0, j0)
and which is constructed by the following procedure.

Procedure 4.12 Construction of the sequence γ given by (12) starting at (i0, j0) to the
next index pair (i1, j1) for the n-by-n Ns.t.n.p. matrix A.

If i0 = n or j0 = n or U := {
(i, j) | i0 < i ≤ n, j0 < j ≤ n, and δi j < 0

}
is

void then terminate with p := 0;
else

put (i1, j1) as the minimum of U with respect to the colexicographic order

and lexicographic order if j0 ≤ i0 and i0 < j0, respectively;

end if.

After all sequences γ starting in row i0 + 1 are determined it is checked whether the
matrix B := A[i0 + 1, . . . , n | 1, . . . , n] fulfils conditions (i), (ii) and (iii) of Theorem 4.13
below (with the obvious modifications in the rectangular case). If one of the conditions is
violated for any instance, the test can be terminated since A is not Ns.t.n.p.

Theorem 4.13 Let A = (ai j ) ∈ Rn,n with all entries are negative except possibly a11 ≤
0. Then A is Ns.t.n.p. if and only if for all i, j = 1, . . . , n the quantities δi j obtained by
the sequences that start from positions (i, j) and are constructed by Procedure 4.12 satisfy
the following conditions:

(i) δi i < 0;
(ii) δi j ≤ 0;

(iii) if δqg = 0 for some q, g ∈ {1, . . . , n}, then δq,t1 = 0 for all t1 < g if g < q and
δt2,g = 0 for all t2 < q if q < g.

Proof Suppose that all entries of A are negative except possibly a11 ≤ 0 and A is Ns.t.n.p.
For each sequence ((i0, j0), (i1, j1), . . . , (i p, jp)) that is obtained by Procedure 4.12 set

a′
i0, j0 :=

{
ai0, j0 if p = 0,
δi0, j0
δi1, j1

if 0 < p.
(14)

By construction a′
i0, j0

is well-defined for each (i0, j0) ∈ {1, . . . , n}2. Define A′ :=
(a′

i0, j0
)n
i0, j0=1.

Claim A′ = Ã and δi0, j0 = ãi0, j0 · ãi1, j1 · · · ãi p, jp . �

Proof of the claim We proceed by decreasing induction with respect to the lexicographical
order on the pairs (i, j), i, j = 1, . . . , n.
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14 M. Adm and J. Garloff

If i = n then by the definition a′
nj = anj = ãn j for all j = 1, . . . , n. For j = n,

the claim also holds by the definition. Suppose that we have shown the claim for all pairs
(i, j) such that i = i0 + 1, . . . , n, j = 1, . . . , n and i = i0, j = j0 + 1, . . . , n holds with
j0 < n. We want to show the claim for the pair (i, j) = (i0, j0). Since A is Ns.t.n.p. then
we have by Theorem 4.8 that Ã is a Cauchon matrix and Ã[1, . . . , n − 1] is a nonnegative
matrix with positive diagonal entries. Since all the entries of A are negative except possibly
a11 ≤ 0 we have that 1 ≤ p. Hence by the induction hypothesis, we obtain that the sequence
which starts from the position (i0, j0) and is constructed by Procedure 4.12 is a lacunary
sequence with respect to the Cauchon diagram that is associated with Ã. Moreover, it is easy
to see that Ã[i0, . . . , n | j0, . . . , n] is a Cauchon matrix. We add a sufficiently large positive
number t to the (1, 1) entry of the matrix D := A[i0, . . . , n | j0, . . . , n] in order to be able
to use Proposition 4.11 and name the resulting matrix Dt . Application of Proposition 4.11
to the matrix Dt (note that D̃t is a Cauchon matrix with the (1, 1) entry equal to ãi0, j0 + t
and the sequence ((i0, j0), . . . , (i p, jp)) is a lacunary sequence with respect to the Cauchon
diagram that is associated with D̃t ) and Laplace expansion yield

det A[i0, i1, . . . , i p | j0, j1, . . . , jp] + t det A[i1, . . . , i p | j1, . . . , jp]
= (ãi0, j0 + t) · ãi1, j1 · · · ãi p, jp .

By the induction hypothesis it follows that

δi0, j0 + tδi1, j1 = (ãi0, j0 + t) · δi1, j1

δi2, j2
· δi2, j2

δi3, j3
· · · δi p, jp

1
= ãi0, j0 · δi1, j1 + tδi1, j1 .

Hence we obtain that ãi0, j0 = δi0, j0
δi1, j1

. Therefore the claim follows and since A′ = Ã is a

Cauchon matrix, Ã[1, . . . , n − 1] is a nonnegative matrix with positive diagonal entries,
and i p = n or jp = n. Hence (i)–(iii) follow.

Conversely, suppose that (i)–(iii) hold. We want to show that under these conditions the
claim holds. Again we proceed by decreasing induction with respect to the lexicographical
order on the pairs (i, j), i, j = 1, . . . , n. For i = n or j = n, the claim holds trivially.
Suppose that we have shown that the claim holds with j0 < n for all the pairs (i, j) such
that i = i0 + 1, . . . , n, j = 1, . . . , n and i = i0, j = j0 + 1, . . . , n. We want to show
that the claim holds for the pair (i, j) = (i0, j0). By the induction hypothesis and (i)–(iii)
Ã[i0, . . . , n | j0, . . . , n] is a Cauchon matrix. Define D and Dt as in the first implication.
Then it is easy to see that D̃ coincides with Ã[i0, . . . , n | j0, . . . , n] and by the induction
hypothesis that D̃ and D̃t are Cauchon matrices. Moreover, Dt satisfies the conditions of
Proposition 4.11.

The sequence that is constructed by Procedure 4.12 (with the obvious modification for
the rectangular case) and starts at the position (1, 1) in Dt is a lacunary sequence with
respect to the Cauchon diagram that is associated with D̃t ; it coincides with the sequence
that is constructed by Procedure 4.12 which starts at the position (i0, j0) in A. By application
of Proposition 4.11 to Dt and Laplace expansion, we obtain as in the first implication using
the induction hypothesis that ãi0, j0 = δi0, j0

δi1, j1
, whence the claim holds. Therefore, under the

conditions (i)–(iii) Ã is a Cauchon matrix and Ã[1, . . . , n − 1] is a nonnegative matrix with
positive diagonal entries. Hence by Theorem 4.8 A is Ns.t.n.p. �
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Linear and Multilinear Algebra 15

If we proceed from row iμ + 1 to row iμ, we already know the determinantal entries
which appear in row iμ + 1 and therefore we can easily check when jμ < iμ whether all
entries in the row iμ + 1 to the left of ãiμ+1, jμ+1 vanish. To check in the case iμ < jμ
whether all entries in the column jμ + 1 above ãiμ+1, jμ+1 vanish, we have to compute in
addition the minors which are associated with the positions (s, jμ+1), s = 1, . . . , iμ. These
minors differ in only one row index. Since a zero column stays a zero column through the
performance of the Cauchon algorithm, the sign of altogether n2 minors have to be checked
(which include also trivial minors of order 1). These are significantly fewer than the number
of determinants needed by the determinantal tests which are based on [7, Theorem 2.1] or
Lemma 2.6. The latter one requires to check 2n+1−n−2 minors, see [16, Section 5.1], but is
independent of the matrix to be checked in contrast to the test based on Theorem 4.13. If we
test a given matrix A for t.n. it suffices to check n2 fixed determinants (independently of A)
for negativity because by Corollary 4.9 we may choose all sequences γ running diagonally.

5. Representation of the entries during running the Cauchon algorithm

In this section, we derive a representation of the entries of Ã that will be helpful in the last
section.

Proposition 5.1 Let A = (ai j ) ∈ Rn,n be Ns.t.n.p. with ann < 0. Then the entries ãk j

of the matrix Ã can be represented as (k, j = 1, . . . , n)

ãk j = det A[k, . . . , i + p | j, . . . , j + p]
det A[k + 1, . . . , i + p | j + 1, . . . , j + p] , (15)

with a suitable 0 ≤ p ≤ n − k, if j ≤ k and 0 ≤ p ≤ n − j , if k < j .
We call p the order of the representation (15).

Proof The proof parallels lengthy the proof of [4, Proposition 2.10] (see [17, Proposition
3.8] for a much more elaborated proof) for the analogous statement for NsT N matrices.
That proof makes use only of the fact that certain minors are nonzero but not of their
common sign; so we can proceed similarly. Therefore, we restrict ourselves here mainly on
the parts which require some extra consideration. As we have seen in Theorem 4.5, after the
application of the Cauchon algorithm to the given Ns.t.n.p. matrix A the resulting matrix
Ã is a Cauchon matrix, i.e. when an entry vanishes then all the entries left to it or above it
vanish, too. It suffices to consider only the case j ≤ i since the case i < j can be reduced to
the latter case: The entries ãi j with i < j are identical to the entries c̃ j i , where C̃ = (c̃i j ) is
the matrix obtained from the transpose C := AT of A at the end of the Cauchon algorithm.
If A is Ns.t.n.p. then 0 < ãi i , i = 1, . . . , n − 1, by Proposition 4.7. Therefore, if an entry
of Ã below the main diagonal vanishes then the entries in the same row left to it vanish,
too. Theorem 4.4 and the proof of Proposition 4.7 show that this property also holds for the
intermediate matrices A(s,2), s = 2, . . . , n.

By decreasing induction on the row index one shows then that each entry ãi j has a
representation of the form (15) and that a neighbouring entry of ãi j in the same row or
column can be represented in the form (15) of identical order. If the numerator in (15) is
negative then by Lemma 2.6 the denominator is negative, too. In the case that an entry in
the lower part of Ã vanishes the entries left to it vanish, too. In the proof of [4, Proposition
2.10] and [17, Proposition 3.8], it was shown that even these entries can be rewritten as
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16 M. Adm and J. Garloff

ratios of contiguous minors. In the case of the Ns.t.n.p. matrix A this is accomplished by
the following proposition and [10, Proposition 3.3] or [18, Proposition 9]. �

Proposition 5.2 [17, Proposition 2.5] Let A ∈ Rn,m be t.n.p. and let α = (i+1, . . . , i+
r), β = ( j + 1, . . . , j + r) for some i ∈ {1, . . . , n − r}, j ∈ {1, . . . , m − r}, and 2 ≤ r ≤
min {n, m} − 1. If A[α | β] has rank r − 1, then

(i) either the rows i + 1, . . . , i + r or the columns j + 1, . . . , j + r of A are linearly
dependent, or

(ii) A[1, . . . , i + r | j + 1, . . . , m] or A[i + 1, . . . , n | 1, . . . , j + r ] has rank r − 1.

Proof We follow the proof of [3, Proposition 1.15]. Since A[α | β] has rank r − 1 and
2 ≤ r then there exist p, q ∈ {1, . . . , r} such that det A[α̂i+p | β̂ j+q ] < 0. Set B := (bkl)

be the (n − r + 1) × (m − r + 1) matrix with

bkl :=
det A[α̂i+p ∪ {k} | β̂ j+q ∪ {l}]

det A[α̂i+p | β̂ j+q ] , (16)

k ∈ {1, . . . , n} \ α̂i+p, l ∈ {1, . . . , m} \ β̂ j+q ,

where the rows and columns are rearranged in increasing order. By Sylvester’s Determinant
Identity, see, e.g. [3, p.3], B is a T N matrix since A is t.n.p. and B[i + 1 | j + 1] = 0
(bi+p, j+q = 0 in the notation of (16)) since A[α | β] has rank r − 1. Hence by [3,
Proposition 1.15] applied to B[i + 1 | j + 1] as submatrix either the row i + 1 of B or
the column j + 1 of B is zero which implies by [19, Corollary 1, p.84] that (i) holds, or
B[1, . . . , i + 1 | j + 1, . . . , m − r + 1] or B[i + 1, . . . , n − r + 1 | 1, . . . , j + 1] has rank
0 which implies by [19, Corollary 1, p.84] that (ii) holds. Therefore the claim follows. �

6. Application to interval problems

In this section, we present some results on intervals of matrices with respect to the checker-
board partial ordering. We start with some auxiliary properties.

Lemma 6.1 [20, Corollary 3.5], [21, Proposition 3.6.6] Let A, B, Z ∈ Rn,n, A and B be
nonsingular with 0 ≤ A−1, B−1. If A ≤ Z ≤ B. Then Z is nonsingular, too, and we have
B−1 ≤ Z−1 ≤ A−1.

The next two lemmata provide monotonicity properties of the determinant over intervals
of special S R matrices.

Lemma 6.2 Let 2 ≤ n, A, B, Z ∈ Rn,n, A ≤∗ Z ≤∗ B, A, B be t.n.p. Then it holds that

det B ≤ det Z ≤ det A,

if

(i) n = 2;
(ii) 2 < n, A is nonsingular and at least one of the following three conditions is fulfilled:
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Linear and Multilinear Algebra 17

(a) B is nonsingular,
(b) b11 < 0,
(c) bnn < 0.

Proof

(i) is shown by direct computation.
(ii) We proceed by induction on n. Assume that the statement is true for fixed n and

let A, B, Z ∈ Rn+1,n+1, A be Ns.t.n.p., B be t.n.p., and A ≤∗ Z ≤∗ B. Assume
first that B is nonsingular. Then by Lemma 2.6 A[2, . . . , n + 1], B[2, . . . , n + 1]
are Ns.t.n.p. and by the induction hypothesis

det B[2, . . . , n + 1] ≤ det Z [2, . . . , n + 1] ≤ det A[2, . . . , n + 1] < 0. (17)

Since 0 ≤ (A∗)−1, (B∗)−1 and A∗ ≤ Z∗ ≤ B∗, it follows from Lemma 6.1 that

(B∗)−1[1] ≤ (Z∗)−1[1] ≤ (A∗)−1[1],
whence

det B[2, . . . , n + 1]
det B

≤ det Z [2, . . . , n + 1]
det Z

≤ det A[2, . . . , n + 1]
det A

. (18)

From

det B ≤ det B[2, . . . , n + 1]
det Z [2, . . . , n + 1] · det Z

and (18) we obtain det B ≤ det Z . The remaining inequality follows similarly. If
B is singular and b11 < 0, we first show that b22 < 0. Suppose that b22 = 0. Then
det B[2, 3|1, 2] = b21 · b32 ≥ 0 which implies that b21 = 0 or b32 = 0 whence
a21 = 0 or a32 = 0, a contradiction to Lemma 2.5 (note that a11 < 0). Therefore
(17) holds by the induction hypothesis. Set B(δ) := B + δe1eT

1 for 0 < δ < −b11,
where e1 denotes the first unit vector of Rn+1. Laplace expansion of det B(δ) along
its first row or column shows that B(δ) is Ns.t.n.p. and the claim follows now
from the case that B is nonsingular and letting δ tend to zero. If B is singular and
bnn < 0 we proceed similarly. �

Lemma 6.3 Let A, B, Z ∈ Rn,n, A, B be Ns ASS R with the same signature, and A ≤∗
Z ≤∗ B. Then det Z is intermediate between det A and det B.

Proof For ε2 = 1 and εn−1 · εn = 1 we proceed similarly as in the nonsingular case in the
proof of Lemma 6.2. Hereby the nonsingularity of A[2, . . . , n + 1] and B[2, . . . , n + 1] is
assured by Lemma 2.2 (i). The case εn−1 · εn = −1 can be reduced to the case εn−1 · εn = 1
by replacing A, Z , B by −B,−Z ,−A, respectively. The case ε2 = −1 can be reduced to
the case ε2 = 1 by multiplication of A, Z , B by Tn , see Lemma 2.2 (iii). �

The next proposition can be proven using Lemma 6.1.

Proposition 6.4 [22, Theorem 1] Let A, B, Z ∈ Rn,n with A ≤∗ Z ≤∗ B. If A, B are
SS R with the same signature ε, then Z is SS R with signature ε.
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18 M. Adm and J. Garloff

Now we are in the position to extend the results of Proposition 6.4 on intervals of SS R
matrices and in [23, Theorem 1] on intervals of Ns AT P matrices to arbitrary Ns ASS R
matrices.

Theorem 6.5 Let A, B, Z ∈ Rn,n with A ≤∗ Z ≤∗ B. If A, B are Ns ASS R with the
same signature ε = (ε1, . . . , εn), then Z is Ns ASS R with the signature ε.

Proof By Theorem 2.3 it suffices to consider the nontrivial contiguous minors of Z . Let
det Z [α|β] be such a minor of order k. We want to show that 0 < εk det Z [α|β]. We proceed
by induction on k. The statement trivially holds for k = 1. Suppose that the sign condition
is true for k − 1, we want to show that it is true for k. We have two cases:
Case 1 If A and B are both type-I staircase matrices, then obviously Z is also a type-I
staircase matrix. Since Z [α|β] is contiguous we have

A[α | β] ≤∗ Z [α | β] ≤∗ B[α | β] (19)

or the reverse inequalities. Without loss of generality suppose that (19) holds.
Case 1.1 Suppose that the contiguous minors det A[α|β], det B[α|β] are both nontrivial
and therefore are nonsingular. Hence A[α|β] and B[α|β] are themselves Ns ASS R (with
common signature (ε1, . . . , εk)) and the claim follows by Lemma 6.3.
Case 1.2 Suppose that det A[α|β] or det B[α|β] is trivial. Then Lemma 2.2 (i) implies
that aα1,β1 · aα2,β2 · · · aαk ,βk = 0 or bα1,β1 · bα2,β2 · · · bαk ,βk = 0. Let

i0 := min
{
i ∈ {1, . . . , k} | aαi ,βi = 0 or bαi ,βi = 0

}
.

Without loss of generality, we may assume that 1 < i0. By (19) we have

det Z [α | β] = det Z [α1, . . . , αi0−1 | β1, . . . , βi0−1] · (20)

det Z [αi0 , . . . , αk |βi0 , . . . , βk].
Since Z [α|β] is nontrivial it follows from Lemma 2.2 (i) that zα1,β1 · · · zαk ,βk �= 0 and
aα1,β1 · · · aαk ,βk = 0 or bα1,β1 · · · bαk ,βk = 0 but not both since zα1,β1 · · · zαk ,βk �= 0 whence
both minors on the right-hand side of (20) are nontrivial, too. Lemma 2.4 implies that
ε j = ε

j
1 , j = 1, . . . , k, and we obtain

εk det Z [α|β] = εk
1 det Z [α|β]

= ε
i0−1
1 det Z [α1, . . . , αi0−1|β1, . . . , βi0−1] · ε

k−i0+1
1 det Z [αi0 , . . . , αik |βi0 , . . . , βk]

= εi0−1 det Z [α1, . . . , αi0−1|β1, . . . , βi0−1] · εk−i0+1 det Z [αi0 , . . . , αik |βi0 , . . . , βk].
Both signed minors on the right-hand side of the last equation are positive by the induction
hypothesis and it follows that 0 < εk det Z [α|β], as desired. This completes the proof of
Case 1.
Case 2 If A and B are type-II staircase matrices, then obviously Z is also a type-II staircase
matrix. By Lemma 2.2 (iii) we can reduce Case 2 to Case 1. �

Using Proposition 5.1 and (18), we obtain by an induction proof similarly as in [4,
Proposition 3.3] (see [17, Proposition 4.1] for a much more elaborated proof) the following
result.
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Linear and Multilinear Algebra 19

Proposition 6.6 Let A, B, Z ∈ Rn,n with A ≤∗ Z ≤∗ B. If A, B are Ns.t.n.p. with
bnn < 0, then Ã ≤∗ Z̃ ≤∗ B̃.

Using Propositions 4.7 and 6.6, we get the following theorem from Theorem 4.8 by a
proof similar to the one of [4, Theorem 3.6].

Theorem 6.7 Let A, B, Z ∈ Rn,n with A ≤∗ Z ≤∗ B. If A, B are Ns.t.n.p. with
bnn < 0, then Z is Ns.t.n.p.

By passing over to A# and back, Theorem 6.7 remains in force if we replace the condition
bnn < 0 by b11 < 0. A similar modification applies to the following corollary.

Proceeding similarly as in the proof of the singular case in Lemma 6.2 we obtain the
following corollary which provides an extension of the nonsingular case.

Corollary 6.8 Let A, B, Z ∈ Rn,n with A ≤∗ Z ≤∗ B, A, B be t.n.p. with bnn < 0
and

(i) A[2, . . . , n] nonsingular and b11 < 0,

or

(ii) A[1, . . . , n − 1] nonsingular.

Then Z is t.n.p.

The following remark shows that the negativity of the entries bnn (and b11) in Theorem
6.7 is not necessary.

Remark 1 [17, Remark 4.3] Let A, B, Z ∈ Rn,n with A ≤∗ Z ≤∗ B and let A and B be
Ns.t.n.p. with b11 = 0. If bnn = 0, then by [18, Proposition 6] there exists a small suitable
0 < ε0 such that Bε := B − εeneT

n is Ns.t.n.p. for all 0 ≤ ε < ε0, where en denotes the
last unit vector of Rn . If ann = 0, then define Aε analogously (with suitable ε) otherwise set
Aε := A and by Proposition [18, Proposition 6] Aε and Bε are Ns.t.n.p. matrices. Define
Zε analogously. Hence we have that for Aε ≤∗ Zε ≤∗ Bε Theorem 6.7 holds. By [18,
Proposition 7] and the definition of Ns.t.n.p. matrices Z is Ns.t.n.p.

We conclude this section with the special case of tridiagonal matrices. To recall, A =
(ai j ) ∈ Rn,n is called tridiagonal if ai j = 0 if 1 < |i − j |, i, j = 1, . . . , n. We need the
following two auxiliary results.

Proposition 6.9 [24, Theorem 4.1] Let 3 ≤ n, A = (ai j ) ∈ Rn,n, 0 ≤ A, and A
be nonsingular and tridiagonal. Then A is S R if and only if A[1, . . . , n − 1] as well as
A[2, . . . , n] are T N and A[1, . . . , n − 2] as well as A[2, . . . , n − 1] are nonsingular.

Proposition 6.10 [4, Corollary 3.7] Let A, B, Z ∈ Rn,n with A ≤∗ Z ≤∗ B. If A, B
are T N and A[2, . . . , n] or A[1, . . . , n − 1] is nonsingular, then Z is T N.

D
ow

nl
oa

de
d 

by
 [

Ju
er

ge
n 

G
ar

lo
ff

] 
at

 1
4:

23
 2

3 
N

ov
em

be
r 

20
15

 



20 M. Adm and J. Garloff

Theorem 6.11 Let A, B, Z ∈ Rn,n with A ≤∗ Z ≤∗ B and A, B be tridiagonal. If A, B
are NsS R with the same signature ε then Z is NsS R with signature ε.

Proof Without loss of generality, we may assume that 0 ≤ A, otherwise replace A by −B
and B by −A. Since the statement trivially holds for n ≤ 2, suppose that 3 ≤ n. It follows
from Propositions 6.9 and 6.10 that Z [1, . . . , n−1] and Z [2, . . . , n] are T N . Since An−2 :=
A[1, . . . , n − 2] and Bn−2 := B[1, . . . , n − 2] are NsT N , 0 ≤ (A∗

n−2)
−1, (B∗

n−2)
−1, and

A∗
n−2 ≤ Z∗[1, . . . , n −2] ≤ B∗

n−2, Lemma 6.1 implies that Z [1, . . . , n −2] is nonsingular,
too. Similarly it follows that Z , Z [2, . . . , n − 1] are nonsingular. By Proposition 6.9 we
obtain that Z is NsS R. �

The special case ε = (1, . . . , 1, εn) in Theorem 6.11 follows also from [4, Corollary
3.8] and [11, Theorem 9].

7. Conclusions

We have investigated the application of the Cauchon algorithm to Ns.t.n.p. matrices which
has lead us to the interval property of these matrices. We also proved that, e.g. the sets of the
Ns ASS R matrices and the tridiagonal NsS R matrices possess this property, too. In [25],
we provide some further signatures for NsS R matrices which allow the interval property.
These results together with the results in [4,22,23] on the interval property of some other
classes of NsS R matrices evoke the (open) question whether the interval property holds
for general NsS R matrices. We mention the following partial answer to this question [26]:
All matrices Z with A ≤∗ Z ≤∗ B are NsS R if all members of a set of matrices C = (ci j ),
ci j ∈ {

ai j , bi j
}
, i, j = 1, . . . , n, of cardinality of at most 22n−1 are NsS R.
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Notes

1. This algorithm is called in [5] the deleting derivations algorithm and in [6] the Cauchon reduction
algorithm.

2. Note that A(k,1) = A(k,2), k = 1, . . . , n − 1, and A(2,2) = A(1,2) so that the algorithm could
already be terminated when A(2,2) is computed.

3. The negativity of the entries of A and nonpositivity of a11 comes into play in the last step, i.e.
when applying the Restoration algorithm with r = (n, n).
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