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1. Introduction

A real matrix is called sign regular and strictly sign regular if all its minors of the same 
order have the same sign or vanish and are nonzero and have the same sign, respectively. 
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Sign regular matrices have found a variety of applications, e.g., in computer aided geo-
metric design [22] and computer vision [20, Section 3.3]. If the sign of all minors of any 
order is nonnegative (nonpositive) then the matrix is called totally nonnegative (totally 
nonpositive). Totally nonnegative matrices arise in a variety of ways in mathematics and 
its applications. For background information the reader is referred to the monographs 
[10], [12], [17], [23].

In [4], we apply the Cauchon algorithm [15], [19] to totally nonnegative matrices and 
prove a long standing conjecture [13] posed by the second author on intervals of nonsin-
gular totally nonnegative matrices, cf. Theorem 5.1 (ii) below: The underlying ordering 
is the checkerboard ordering which is obtained from the usual entry-wise ordering in the 
set of the square real matrices of fixed order by reversing the inequality sign for each 
entry in a checkerboard fashion. Then all matrices lying between two nonsingular totally 
nonnegative matrices with respect to this ordering are nonsingular and totally nonnega-
tive, too. The motivation for considering such an interval property stems, e.g., from the 
investigation of systems of linear equations, where the coefficients of the matrix and the 
right-hand side are due to uncertainties, e.g., measurement errors, which can be bounded 
from above and below. Then it is important to know whether all element matrices from 
the resulting matrix interval have a certain property. For background information the 
reader is referred to the survey article [14].

In this paper, we continue our study of the Cauchon algorithm and apply it to the 
class of sign regular matrices having all their minors nonnegative with the exception of 
the determinant which is negative, termed below NSTN− matrices. To the best of our 
knowledge, such matrices were for the first time more thoroughly investigated in [16], 
where a characterization and a bidiagonal factorization are presented. The nonsingular 
TN matrices constitute a subclass of the P -matrices which are matrices having all their 
principal minors positive. The NsTN− matrices whose minors of order n − 1 formed by 
deleting the first (last) row and column are even positive,1 constitute a subclass of the 
almost P -matrices, which are matrices having all their proper principal minors positive 
and a negative determinant. Such matrices originated in the work of Ky Fan [11] and 
are closely connected with the linear complementarity problem [21]. In [9, Theorems 4.3 
and 4.5] and [11, Lemma 3], three subclasses of the almost P -matrices are presented 
which possess the interval property. Another class related to the NsTN− matrices are 
the nonsingular totally nonpositive matrices: If A is NsTN− and S the diagonal matrix 
diag(1, −1, 1, −1, . . .), then SA−1S is totally nonpositive [16, p. 1247]. For references and 
the interval property of these matrices see [6].

In this paper, we employ the Cauchon algorithm to provide further properties of the 
NsTN− matrices and show that these matrices possess the interval property, i.e., all 
matrices lying between two such matrices with respect to the checkerboard ordering are 
NsTN− matrices, too.

1 See Theorem 4.3 (v) below.
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The organization of our paper is as follows. In Section 2, we introduce our notation 
and give some auxiliary results which we use in the subsequent sections. In Section 3, 
we recall from [5] the condensed form of the Cauchon algorithm on which our proofs 
heavily rely. In Section 4, we apply the Cauchon algorithm to derive a new necessary 
and sufficient condition for a matrix to be NsTN−. Also, we present the maximum 
allowable perturbation of the entry in position (2, 2) of an NsTN− matrix such that the 
perturbed matrix remains to be NsTN−. In Section 5, we prove the interval property 
for NsTN− matrices and related classes of sign regular matrices.

2. Notation and auxilary results

2.1. Notation

We now introduce the notation used in our paper. For κ, n, we denote by Qκ,n the set 
of all strictly increasing sequences of κ integers chosen from {1, 2, . . . , n}. If α ∈ Qk,n, 
then αk̂ denotes the sequence α without its kth member. The dispersion of α, denoted 
by d(α), is defined to be

d(α) = ακ − α1 − (κ− 1);

it represents a measure for the gaps in the sequence α. If d(α) = 0, i.e., α is formed from 
consecutive integers, α is called contiguous. We use the set theoretic symbols ∪, ∩, and \
to denote somewhat not precisely but intuitively the union, intersection, and difference 
of two index sequences, where we consider the resulting sequence as strictly increasing 
ordered. Similarly, we employ the symbol ε to denote membership in a sequence. Let A
be a real n × n matrix. For α = (α1, α2, . . . , ακ), β = (β1, β2, . . . , βκ) ∈ Qκ,n, we denote 
by A[α|β] the κ ×κ submatrix of A contained in the rows indexed by α1, α2, . . . , ακ and 
columns indexed by β1, β2, . . . , βκ. If instead these rows are removed from A, we denote 
the submatrix of A by A(α|β]; we use the notation A[α|β) if the columns indexed by 
β are deleted. The matrix A(α|β) is then the matrix obtained from A by deletion of 
its rows indexed by α and its columns indexed by β. If α = β, we denote the principal 
submatrices of A by A[α] and A(α). We suppress the brackets when we enumerate the 
indices explicitly. If α = (1, . . . , n), we write A[−|β] and A[−|β) and if β = (1, . . . , n), we 
use the notation A[α|−] and A(α|−]. If d(α) = d(β) = 0, we call the submatrix A[α|β]
as well as its determinant contiguous. For any contiguous κ-by-κ submatrix A[α|β] of 
A, we call the submatrix

A[α1, . . . , ακ, ακ + 1, . . . , n|1, . . . , β1 − 1, β1, . . . , βκ]

of A having A[α|β] in its upper right corner the left shadow of A[α|β], and, analogously, 
we call the submatrix

A[1, . . . , α1 − 1, α1, . . . , ακ|β1, . . . , βκ, βκ + 1, . . . , n]
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having A[α|β] in its lower left corner the right shadow of A[α|β].
Let ε = (ε1, . . . , εn) be a signature sequence, i.e., ε ∈ {1,−1}n. The matrix A is called 
strictly sign regular (abbreviated SSR henceforth) and sign regular (abbreviated SR)
with signature ε if 0 < εκ detA[α|β] and 0 ≤ εκ detA[α|β], respectively, for all α, β ∈
Qκ,n, κ = 1, 2, . . . , n. If A is SSR [SR] with signature ε = (1, 1, . . . , 1), then A is called 
totally positive (abbreviated TP ) [totally nonnegative (abbreviated TN)]. If A is SR
with signature ε = (1, . . . , 1, −1), then we denote this class of matrices by TN−. If A
is in a certain class of SR matrices and in addition also nonsingular then we affix Ns

to the name of the class. By Eij we denote the matrix having a 1 in position (i, j) and 
all other entries zero. We reserve throughout the notation Tn = (tij) for the backward 
identity matrix with tij := δn+1−i,j , i, j = 1, . . . , n, and denote A# := TnATn. As in [10, 
p. 34] we obtain that if A is NsTN− then so is A#.

We endow Rn,n, the set of the real n ×n matrices, with two partial orderings: Firstly, 
with the usual entry-wise ordering (A = (aij), B = (bij) ∈ Rn,n)

A ≤ B : ⇔ aij ≤ bij , i, j = 1, . . . , n.

The strict inequality A < B is also understood entry-wise.
Secondly, with the checkerboard ordering, which is defined as follows. Let S :=
diag(1, −1, . . . , (−1)n+1) and A∗ := SAS. Then we define

A ≤∗ B : ⇔ A∗ ≤ B∗.

2.2. Auxiliary results

Lemma 2.1. [8, Corollary 1] Let A ∈ Rn,n be such that detA[γ|δ] �= 0, where γ, δ ∈ Qk,n

and let B = (bij) be the matrix obtained from A by setting

bij := detA[γ ∪ {i} |δ ∪ {j}]
detA[γ|δ] , for all i ∈ {1, . . . , n} \ γ and

j ∈ {1, . . . , n} \ δ. (1)

Then it holds that

rankA[γ ∪ γ′|δ ∪ δ′] = |γ| + rankB[γ′|δ′],

where γ′, δ′ are strictly increasing sequences from {1, . . . , n− k} and γ ∩ γ′ = δ ∩ δ′ = φ.

Lemma 2.2. [1, Lemma 1.7] Let A ∈ Rn,m, α = (α1, . . . , αl) ∈ Ql,n and β =
(β1, . . . , βl−1) ∈ Ql−1,m−1 with d(β) > 0. Then for all η such that βl−1 < η ≤ m, 
k ∈ {1, . . . , l}, s ∈ {1, . . . , h}, and βh < t < βh+1 for some h ∈ {1, . . . , l − 2} or 
βl−1 < t < η the following determinant identity holds:

detA[αk̂|βŝ ∪ {t}] detA[α|β ∪ {η}] = detA[αk̂|βŝ ∪ {η}] detA[α|β ∪ {t}]
+ detA[αˆ|β] detA[α|βŝ ∪ {t, η}].
k
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Lemma 2.3. [17, Corollary 9.1], [23, Theorem 1.13] All principal minors of an NsTN

matrix are positive.

Lemma 2.4. [23, Proposition 1.15] If A ∈ Rn,m is TN and rank A[i + 1, . . . , i + r|j +
1, . . . , j + r] = r − 1, then

(i) either the rows i + 1, . . . , i + r or the columns j + 1, . . . , j + r of A are linearly 
dependent, or

(ii) the right or left shadow of A[i + 1, . . . , i + r|j + 1, . . . , j + r] has rank r − 1.

Theorem 2.5. [16, Theorem 4] Let A ∈ Rn,n. Then A is NsTN− if and only if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

detA < 0, detA(1) ≥ 0,
detA[1, . . . , k|β] ≥ 0, β ∈ Qk,n, k = 1, . . . , n− 1,
detA[α|1, . . . , k] ≥ 0, α ∈ Qk,n, k = 1, . . . , n− 1,
detA[1, . . . , k] > 0, k = 1, . . . , n− 2.

(2)

Lemma 2.6. [7, Theorem 2.1] Let A ∈ Rn,m be of rank r and ε be a signature sequence. 
If 0 ≤ εk detA[α|β] for all α, β ∈ Qk,n′ , where n′ = min {n,m}, is valid whenever 
d(β) ≤ n − r, then A is SR with signature ε.

Lemma 2.7. [18, Corollary 3.5] Let A, B, Z ∈ Rn,n, A and B be nonsingular, and A ≤
Z ≤ B. If A−1, B−1 ≥ 0, then Z is nonsingular and B−1 ≤ Z−1 ≤ A−1.

3. Cauchon diagrams and the Cauchon algorithm

In this section we first recall from [15], [19] the definition of a Cauchon diagram and 
from [5] the condensed form of the Cauchon algorithm.

Definition 3.1. An n ×m Cauchon diagram C is an n ×m grid consisting of n ·m squares 
colored black and white, where each black square has the property that either every 
square to its left (in the same row) or every square above it (in the same column) is 
black.

We denote by Cn,m the set of the n × m Cauchon diagrams. We fix positions in a 
Cauchon diagram in the following way: For C ∈ Cn,m and i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, 
(i, j) ∈ C if the square in row i and column j is black. Here we use the usual matrix 
notation for the (i, j) position in a Cauchon diagram, i.e., the square in (1, 1) position 
of the Cauchon diagram is in its top left corner.

Definition 3.2. Let A ∈ Rn,m and let C ∈ Cn,m. We say that A is a Cauchon matrix 
associated with the Cauchon diagram C if for all (i, j), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, 
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we have aij = 0 if and only if (i, j) ∈ C. If A is a Cauchon matrix associated with an 
unspecified Cauchon diagram, we just say that A is a Cauchon matrix.

Algorithm 3.3 (Condensed form of the Cauchon Algorithm). [5, Algorithm 3.2]
Let A = (aij) ∈ Rn,m. Set A(n) := A.
For k = n − 1, . . . , 1 define A(k) = (a(k)

ij ) ∈ Rn,m as follows:
For i = 1, . . . , k,
for j = 1, . . . , m − 1,
set sj := min

{
h ∈ {j + 1, . . . ,m} | a(k+1)

k+1,h �= 0
}

(set sj := ∞ if this set is void),

a
(k)
ij :=

⎧⎪⎨
⎪⎩

a
(k+1)
ij −

a
(k+1)
k+1,ja

(k+1)
isj

a
(k+1)
k+1,sj

if sj < ∞,

a
(k+1)
ij if sj = ∞,

and for i = k + 1, . . . , n, j = 1, . . . , m, and i = 1, . . . , k, j = m, a(k)
ij := a

(k+1)
ij .

Put Ã := A(1).

Lemma 3.4. [15], [4] The matrix A is TN if and only if Ã is an entry-wise nonnegative 
Cauchon matrix. A is in addition nonsingular if and only if all diagonal entries of Ã are 
positive.

We recall from [19] the definition of a lacunary sequence associated with a Cauchon 
diagram.

Definition 3.5. Let C ∈ Cn,m. We say that a sequence

γ := ((ik, jk), k = 0, 1, . . . , t), (3)

which is strictly increasing in both arguments is a lacunary sequence with respect to C
if the following conditions hold:

(i) (ik, jk) /∈ C, k = 1, . . . , t;
(ii) (i, j) ∈ C for it < i ≤ n and jt < j ≤ m.
(iii) Let s ∈ {1, . . . , t− 1}. Then (i, j) ∈ C if

(a) either for all (i, j), is < i < is+1 and js < j,
or for all (i, j), is < i < is+1 and j0 ≤ j < js+1

and
(b) either for all (i, j), is < i and js < j < js+1

or for all (i, j), i < is+1, and js < j < js+1.

Proposition 3.6. [2, Corollary 3.3] Let A ∈ Rn,m be such that Ã is a Cauchon matrix 
and let γ = ((ik, jk), k = 0, 1, . . . , t) be a lacunary sequence. Then the following repre-
sentation holds
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detA[i0, i1, . . . , it|j0, j1, . . . , jt] = ãi0,j0 · ãi1,j1 · . . . · ãit,jt . (4)

4. A necessary and sufficient condition for a matrix to be NsTN−

Lemma 4.1. Let A ∈ Rn,n be such that A(n), A[−|1), and A(1|−] are TN , and A(n|1)
and A(1, n) are nonsingular. Then the following minors are nonnegative

detA[1, . . . , 
|β ∪ {n}], (5a)

detA[β ∪ {n} |1, . . . , 
], (5b)

where 
 = 1, . . . , n − 1, and β = (β1, . . . , β�−1) ∈ Q�−1,n−1 with β1 = 1.

Proof. We only prove (5a). The proof of (5b) is similar. For 
 = 1, detA[1, . . . , 
|β ∪
{n}] = a1n which is nonnegative since A[−|1) is TN . Assume 2 ≤ 
 ≤ n − 1 and let 
α = (1, . . . , 
), β1 = 1. Then by Lemma 2.2, we obtain choosing k = s = 1 and η = n

detA[2, . . . , 
|β1̂ ∪ {t})] detA[1, . . . , 
|β ∪ {n}] = detA[2, . . . , 
|β1̂ ∪ {n}] ×

detA[1, . . . , 
|β ∪ {t}] + detA[2, . . . , 
|β] detA[1, . . . , 
|β1̂ ∪ {t, n}],

for all t ∈ {1, . . . , n− 1}\β. The minors on the right-hand side and detA[2, . . . , 
|β1̂∪{t})]
are nonnegative since they correspond to minors in A(1|−], A[−|1), and A(n), for any 
t ∈ {1, . . . , n− 1}\β. If for all 
 = 2, . . . , n −1, there exists t� ∈ {1, . . . , n− 1}\β such that 
detA[2, . . . , 
|β1̂ ∪ {t�})] > 0, then we are done. Otherwise, for some 
 ∈ {2, . . . , n− 1}, 
detA[2, . . . , 
|β1̂ ∪ {t})] = 0 for all t ∈ {1, . . . , n− 1} \ β. Hence A[2, . . . , 
|2, . . . , n − 1]
has rank at most 
 −2. By Lemma 2.3, we have for 
 = 2, . . . , n −2, detA[2, . . . , 
|3, . . . , 
]
are positive since A(n|1) is NsTN and by the assumption detA(1, n) > 0. Hence 
A[2, . . . , 
|2, . . . , n − 1] has rank 
 − 1 for all 
 = 2, . . . , n − 1 which is a contradic-
tion. Hence for each 
 = 2, . . . , n − 1, there exists t� ∈ {1, . . . , n− 1} \ β such that 
detA[2, . . . , 
|β1̂ ∪ {t�})] > 0. Hence for 
 = 1, . . . , n − 1, detA[1, . . . , 
|β ∪ {n}] ≥ 0. �
Lemma 4.2. Let A ∈ Rn,n be NsTN−. Then the following minors are positive:

(i) For any α ∈ Qk,n such that k ≤ n − 2, detA[α] > 0;
(ii) for r = 1, . . . , n − 1,

detA[2, . . . , r + 1|1, . . . , r] > 0, detA[1, . . . , r|2, . . . , r + 1] > 0, (6)

detA[r + 1, . . . , n|r, . . . , n− 1] > 0, detA[r, . . . , n− 1|r + 1, . . . , n] > 0. (7)

In particular,

detA(1|n), detA(n|1) > 0. (8)
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Proof. Let A be NsTN−. Assume (i) is not true. Then there exists α ∈ Qk,n such that 
k ≤ n − 2 and detA[α] = 0. Assume that k0 is the smallest k, 1 ≤ k ≤ n − 2, such that 
statement (i) is not true. If k0 = 1, then assume that aii = 0. Since A is nonsingular 
there must be nonzero entries in row i and column i. By considering minors of order 2
it follows that the left or the right shadow of aii is the nullmatrix which implies that A
is singular. In the following assume 1 < k0. Then there exists α = (α1, . . . , αk0) ∈ Qk0,n

such that detA[α] = 0 and detA[αî0
] > 0 for some i0 ∈ {1, . . . , k0}. Set γ = δ := αî0

and define B as in Lemma 2.1. Since A is NsTN− we have B is so. Moreover, bi0,i0 = 0
which implies that B is singular. Hence by Lemma 2.1, A is also singular which is a 
contradiction. This completes proof of (i).
To show (ii), we first prove (8). We apply Sylvester’s Determinant Identity, e.g., [10, pp 
29 - 30] to obtain

detA(1, n) detA = detA(1) detA(n) − detA(1|n) detA(n|1). (9)

By (i), detA(1, n) is positive. If detA(1|n) detA(n|1) = 0, then it follows that

detA = detA(1) detA(n)
detA(1, n) ≥ 0 (10)

which is a contradiction. Hence detA(1|n) > 0 and detA(n|1) > 0.
The remaining inequalities are now a simple consequence of (8) and Lemma 2.3. �

Inequalities (6) are shown in [16, Lemma 2] by a lengthy and complicated proof.

Theorem 4.3. Let A ∈ Rn,n be NsTN− and let Ã be the matrix obtained from A by the 
application of Algorithm 3.3. Then the following statements hold:

(i) Ã[−|1) and Ã(1|−] are nonnegative Cauchon matrices;
(ii) ãi,i+1, ãi+1,i > 0, i = 1, . . . , n − 1;
(iii) ãii > 0, i = 3, . . . , n.
(iv) If ã22 > 0, then ã11 < 0.
(v) ã22 = 0 if and only if detA(1) = 0.

Proof. (i) By the fact that the matrices that are obtained by the application of Algo-
rithm 3.3 to the submatrices A[−|1) and A(1|−] coincide with the matrices Ã[−|1)
and Ã(1|−], respectively, and A is NsTN−, we have by Lemma 3.4 that the matrices 
are nonnegative Cauchon matrices.

(ii) By (i), Ã[−|1) and Ã(1|−] are nonnegative Cauchon matrices. By (8) and proceed-
ing by decreasing induction with respect to the lexicographic order starting from 
position (n − 1, n) and (n, n − 1), respectively, the following sequences are lacunary 
with respect to CÃ[−|1) and CÃ(1|−]
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((i, i + 1), (i + 1, i + 2), . . . , (n− 1, n)),

((i + 1, i), (i + 2, i + 1), . . . , (n, n− 1)),

i = 1, . . . , n − 1. Therefore, by Proposition 3.6 and (8) we have ãi,i+1 > 0 and 
ãi+1,i > 0.

(iii) We proceed as in (ii) noticing that ((i, i), (i + 1, i + 1), . . . , (n, n)), i = 3, . . . , n, are 
lacunary sequences with respect to CÃ(1|−] and using Lemma 4.2 (i).

(iv) By (i) and since ã22 > 0, Ã is a nonnegative Cauchon matrix with the exception 
of possibly ã11. Since the sequence ((1, 1), (2, 2), . . . , (n, n)) is a lacunary sequence 
with respect to CÃ, we obtain by Proposition 3.6 that detA = ã11 · ã22 · . . . · ãnn. 
Therefore, by (iii) and ã22 > 0 we conclude that ã11 < 0.

(v) By (i) and (iii), the sequence ((2, 2), (3, 3), . . . , (n, n)) is a lacunary sequence with 
respect to CÃ(1|−]. Hence by Proposition 3.6, detA(1) can be represented as

detA(1) = ã22 · ã33 · . . . · ãnn (11)

and we can conclude by (iii) that

ã22 = detA(1)
ã33 · . . . · ãnn

. (12)

Therefore, detA(1) = 0 if and only if ã22 = 0. �
The preceding results allow us now to present a sufficient criterion based on Algo-

rithm 3.3 for a real matrix to be NsTN−.

Theorem 4.4. Let A ∈ Rn,n be such that (i)-(iv) in Theorem 4.3 hold, and let detA(n)
be nonnegative. Then A is NsTN−.

Proof. We obtain by Theorem 4.3 (i) and arguing similarly as in its proof that 
A[−|1) and A(1|−] are TN . Since ãi,i+1, ̃ai+1,i > 0, i = 1, . . . , n − 1, the sequences 
((1, 2), (2, 3), . . . , (n −1, n)) and ((2, 1), (3, 2), . . . , (n, n −1)) are lacunary with respect to 
CÃ[−|1) and CÃ(1|−], respectively. Hence by Proposition 3.6 we have detA(n|1) > 0
and detA(1|n) > 0. Moreover, by Lemma 2.3 we have detA(1, n|1, 2) > 0 and 
detA(1, 2|1, n) > 0. In the same way we may conclude from (iii) that detA[3, . . . , n] > 0
and by Lemma 2.3 it follows that detA[3, . . . , n − 1] > 0. Therefore, if detA(1, n) = 0, 
then rankA(1, n) = n − 3. By considering A(1, n) as a submatrix with rank n − 3 in the 
TN matrix A(1|−] we have by Lemma 2.4 that the rows 2, 3, . . . , n − 1 or the columns 
2, 3, . . . , n − 1 are linearly dependent or the left or the right shadow of A(1, n) has rank 
n − 3 which contradicts that detA(1, n|1, 2) > 0 and detA(1, 2|1, n) > 0. Therefore, we 
obtain

detA(1, n) > 0. (13)
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Let B := A(n).

Claim. B is TN .

The submatrices B[−|1) and B(1|−] are TN and the matrices that are obtained by 
the application of Algorithm 3.3 to these submatrices coincide with the matrices B̃[−|1)
and B̃(1|−], respectively. Application of Algorithm 3.3 to B yields B̃ with all its entries 
nonnegative with the exception of possibly ̃b11. Moreover, we obtain by Lemma 3.4, ̃bkk >

0, k = 2, . . . , n − 1, since B(1) = A(1, n) is NsTN and the application of Algorithm 3.3
to the submatrix B(1) coincides with the submatrix B̃(1). Furthermore, B̃ is a Cauchon 
matrix: if b̃ij = 0 for some i, j = 2, . . . , n − 1, then all of the entries to its left in the 
same row must be zero whenever i > j or the entries above it in the same column must 
be zero whenever i < j since B(1|−] and B[−|1) are TN and b̃kk > 0, k = 2, . . . , n − 1. 
The sequence ((1, 1), (2, 2), . . . , (n −1, n −1)) is a lacunary sequence with respect to CB̃ . 
Hence by Proposition 3.6, detB can be represented as detB = b̃11 · b̃22 · . . . · b̃n−1,n−1. 
Therefore, we obtain

b̃11 = detB
b̃22 · . . . · b̃n−1,n−1

= detA(n)
b̃22 · . . . · b̃n−1,n−1

≥ 0.

Whence B̃ is a nonnegative Cauchon matrix and by Lemma 3.4, B is TN .
To show detA < 0, we distinguish the following two cases:
Case 1. ã22 > 0.
In this case, Ã is a Cauchon matrix and the sequence ((1, 1), (2, 2), . . . , (n, n)) is a 
lacunary with respect to CÃ. Hence by Proposition 3.6, detA can be represented as 
detA = ã11 · ã22 · . . . · ãnn, and we conclude by the assumption (iv) that detA < 0.
Case 2. ã22 = 0.
We proceed as in proof of (v) in Theorem 4.3 to conclude that detA(1) = 0 since ã22 = 0. 
By Sylvester’s Determinant Identity, we obtain

detA(1, n) detA = detA(1) detA(n) − detA(1|n) detA(n|1)

= − detA(1|n) detA(n|1).

Because detA(1|n), detA(n|1), detA(1, n) > 0, we conclude from the last equality that 
detA < 0.
To conclude the proof, by Lemma 2.6 it is enough to show that for all α, β ∈ Q�,n, 

 = 1, . . . , n −1, detA[α|β] ≥ 0 with d(α) = 0. If α1 > 1 or β1 > 1 or α1 = 1 and β� < n, 
then detA[α|β] ≥ 0 since A[−|1), A(1|−], and A(n) are TN . Hence we are left to show 
that the following minors are nonnegative

detA[1, . . . , 
|β], (14)
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where 
 = 1, . . . , n − 1, and β = (β1, . . . , β�) ∈ Q�,n−1 with β1 = 1 and β� = n. By 
Lemma 4.1 such minors are nonnegative. Therefore, A is NsTN−. �

Theorems 4.3 and 4.4 together provide a necessary and sufficient condition for a matrix 
A ∈ Rn,n to be NsTN−. This provides a test which requires only to run Algorithm 3.3
twice (one time in order to check the sign of detA(n)). It is an alternative to the test 
based on [16, Theorem 8] which relies on Neville elimination and bidiagonal factorization. 
Both tests require O(n3) operations.

The analysis made so far shows that the coefficient in position (2, 2) in an NsTN−

matrix is the most critical one. In the following two theorems we consider the invariance 
of the property of being NsTN− of the matrix A under perturbations of a22.

Theorem 4.5. Let A ∈ Rn,n be NsTN− and let δ− := min
{

detA(n)
detA(2,n) ,

detA(1)
detA(1,2)

}
. Then 

for any x ∈ [0, δ−],

Bx := A− xE22

is NsTN−. The bound δ− is the best possible.

Proof. Let x be any real number in [0, min δ−]. By Theorem 4.4, it is enough to show 
that B̃x = (b̃ij) satisfies (i) - (iv) in Theorem 4.3 and detBx(n) ≥ 0, where B̃x is the 
matrix obtained by the application of Algorithm 3.3 to Bx. By the fact that the matrices 
that are obtained by the application of Algorithm 3.3 to the submatrices Bx[−|1) and 
Bx(1|−] coincide with the matrices B̃x[−|1) and B̃x(1|−], respectively, and

b̃i+1,i+1 = ãi+1,i+1 > 0,

b̃i,i+1 = ãi,i+1 > 0,

b̃i+1,i = ãi+1,i > 0,

⎫⎪⎪⎬
⎪⎪⎭ for i = 2, . . . , n− 1, (15)

we have that B̃x[−|1) and B̃x(1|−] are nonnegative Cauchon matrices with the excep-
tion of possibly b̃12, b̃21, and b̃22. By (15), the sequences ((1, 2), (2, 3), . . . , (n − 1, n)), 
((2, 1), (3, 2), . . . , (n, n − 1)), and ((2, 2), (3, 3), . . . , (n, n)) are lacunary with respect to 
CB̃x(1|−] and CB̃x[−|1). Hence by Proposition 3.6, we obtain

b̃12 = detBx(n|1)
b̃23 · . . . · b̃n−1,n

= detA(n|1) + x detA(2, n|1, 2)
ã23 · . . . · ãn−1,n

> 0,

and similarly b̃21 > 0. The inequality

b̃22 = detBx(1)
b̃33 · . . . · b̃nn

= detA(1) − x detA(1, 2)
ã33 · . . . · ãn,n

≥ 0,

is valid if and only if x ≤ detA(1) . Moreover, if ̃b22 > 0, then B̃x is a Cauchon matrix and 
detA(1,2)



M. Adm, J. Garloff / Linear Algebra and its Applications 612 (2021) 146–161 157
the sequence ((1, 1), . . . , (n, n)) is lacunary with respect to CB̃x
and by Proposition 3.6, 

we obtain

b̃11 = detBx

b̃22 · . . . · b̃nn
= detA− x detA(2)

b̃22 · . . . · b̃n,n
< 0.

Finally,

detBx(n) = detA(n) − x detA(2, n) = detA(2, n)( detA(n)
detA(2, n) − x).

Hence detBx(n) ≥ 0 if and only if x ≤ detA(n)
detA(2,n) . Therefore, Bx is NsTN− for all 

x ∈ [0, min δ−]. �
Theorem 4.6. Let A ∈ Rn,n be NsTN− and let S+ be the set of defined quantities among 
− detA

detA(2) , 
detA(n|1)

detA(2,n|1,2) , 
detA(1|n)

detA(1,2|2,n) . Define δ+ as follows:

δ+ :=
{

minS+ if S+ is not void,
∞ otherwise.

(16)

Then for any x ∈ [0, δ+),

Bx := A + xE2,2

is NsTN−. The bound δ+ is the best possible.

Proof. By Lemma 4.2, δ+ is positive. In the following we may suppose that x > 0. Firstly, 
we show that D := Bx[−|1) is TN for all 0 < x < detA(n|1)

detA(2,n|1,2) if detA(2, n|1, 2) �= 0
and for all x > 0 if detA(2, n|1, 2) = 0. We proceed by showing that D̃ is a nonnegative 
Cauchon matrix (which is obtained from D by Algorithm 3.3). By the definition of D
and Lemma 4.2 we have for k = 2, . . . , n − 1

detD[k, . . . , n− 1] = detA[k, . . . , n− 1|k + 1, . . . , n] > 0, (17)

detD[k + 1, . . . , n|k, . . . , n− 1] = detA[k + 1, . . . , n] > 0. (18)

Therefore, the matrices D[k, . . . , n − 1] and D[k + 1, . . . , n|k, . . . , n − 1] are NsTN and 
by Lemma 3.4, the matrices obtained from both matrices by Algorithm 3.3 are Cauchon 
matrices with positive diagonal entries from which we can form lacunary sequences. By 
Proposition 3.6, we get for k = 2, . . . , n − 1 the following representation of entries of D̃

d̃kk = detD[k, k + 1, . . . , n− 1]
detD[k + 1, . . . , n− 1] , (19)

d̃k+1,k = detD[k + 1, k + 2, . . . , n|k, k + 1, . . . , n− 1]
. (20)
detD[k + 2, . . . , n|k + 1, . . . , n− 1]
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By (19), (20), A[−|1) is TN , and by the fact that D̃(1, 2|−] and D̃[−|1) coincide with 
the matrices that are obtained by the application of Algorithm 3.3 to the submatri-
ces D(1, 2|−] and D[−|1), respectively, we conclude that D̃ is a Cauchon matrix with 
all of its entries are nonnegative with the exception of possibly d̃11 and d̃21. Since 
((1, 1), (2, 2), . . . , (n − 1, n − 1)) and ((2, 1), (3, 2), . . . , (n, n − 1)) are lacunary sequences 
with respect to CD̃, we obtain the following representation of d̃11 and d̃21 from which 
we conclude that

d̃11 = detD[1, . . . , n− 1]
detD[2, . . . , n− 1] = detA(n|1) − x detA(2, n|1, 2)

detA(1, n|1, 2) , (21)

d̃21 = detD[2, . . . , n|1, . . . , n− 1]
detD[3, . . . , n|2, . . . , n− 1] = detA(1) + x detA(1, 2)

detA(1, 2) . (22)

Therefore, D̃ is a nonnegative matrix if and only if detA(n|1) − x detA(2, n|1, 2) >
0 which is equivalent to 0 < x < detA(n|1)

detA(2,n|1,2) if detA(2, n|1, 2) �= 0 and x > 0 if 
detA(2, n|1, 2) = 0. In the same way we can show that Bx(1|−] is TN for all 0 < x <

detA(1|n)
detA(1,2|2,n) if detA(1, 2|2, n) �= 0 and x > 0 if detA(1, 2|2, n) = 0.

We conclude the proof by showing that for any x ∈ (0, δ+), Bx is NsTN−. If 
detA(2) = 0 or 0 < x < − detA

detA(2) if detA(2) �= 0, we obtain by Laplace expansion 
along the second column that detBx < 0. Let α, β ∈ Qk,n, k = 1, . . . , n − 1. In the 
following, we show that detBx[α|β] ≥ 0. We distinguish the following two cases:
Case 1. 2 /∈ α ∩ β.
In this case we have detBx[α|β] = detA[α|β] ≥ 0.
Case 2. 2 ∈ α ∩ β.
If in addition 1 ∈ α ∩ β, then we have

detBx[α|β] = detA[α|β] + x detA[α2̂|β2̂] ≥ 0.

Otherwise, 1 /∈ α or 1 /∈ β which implies that Bx[α|β] is a submatrix in Bx(1|−] or 
Bx[−|1), respectively. Therefore, detBx[α|β] is nonnegative since Bx(1|−] and Bx[−|1)
are TN . �
Example 4.7. Let

A =
[1 1 1

1 1.75 3
1 3 6

]

which is NsTN− and Bx := A +xE22, x ∈ R. Then detBx = 5x −0.25 and detBx(1) =
1.5 + 6x. If x = 0.05 = − detA

detA(2) , detBx changes its sign from − to +, whereas the other 
minors remain positive, and at −x = 0.25 = detA(1)

detA(1,2) , detBx(1) changes its sign from 
+ to −, whereas the other minors keep their sign. So the interval [−0.25, 0.05) provides 
the maximum allowable perturbation such that Bx remains NsTN−.
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5. The interval property

In this section, we show that the class of NsTN− matrices possesses the interval prop-
erty. We will make use of the interval property of the NsTN matrices. For a weakening 
of the nonsingularity assumption in (ii), see [3].

Theorem 5.1. [4, Lemma 3.2, Theorem 3.6, and Corollary 3.7] Let A, B, Z ∈ Rn,n be 
such that A ≤∗ Z ≤∗ B and let A and B be TN .

(i) If A(1) or A(n) is nonsingular, then Z is TN .
(ii) If A is nonsingular, then Z is NsTN .

Now we are in the position to state the interval property of NsTN− matrices.

Theorem 5.2. Let A, B, Z ∈ Rn,n be such that A ≤∗ Z ≤∗ B and let A and B be NsTN−. 
Then Z is NsTN−, too.

Proof. We show that the intermediate matrix Z fulfills the conditions of Theorem 2.5. 
Since A ≤∗ B, we have S(−B)S ≤ S(−A)S, where S = diag(1, −1, 1, . . . , (−1)n−1). By 
−SA−1S = (S(−A)S)−1, −SB−1S = (S(−B)S)−1 ≥ 0, we may apply Lemma 2.7, to 
conclude that

−SZ−1S ≥ 0. (23)

Application of Lemma 4.2 (i), (8), and Theorem 5.1 (ii) yields that Z[1, . . . , n − 2], 
Z(1|n), and Z(n|1) are NsTN . By Lemma 4.2 (i) and Theorem 5.1 (i) applied to A(n)
and B(n), we conclude that Z(n) is TN . Similarly we obtain that Z(1) is TN . To prove 
that detZ[1, . . . , k|β] ≥ 0, β ∈ Qk,n, k = 1, . . . , n − 1, we use that the remaining minors 
are all of the form (5a). To apply Lemma 4.1, we have to show that Z[−|1) and Z(1|−] are 
TN (for the assumption that detA(1, n) > 0 see (13)). We only prove that Z(1|−] is TN , 
the proof that Z[−|1) is TN is analogous. Since Z(1|n) is nonsingular, Z(1|−] has rank 
n − 1. By the fact that Z(1|n) and Z(1) are TN , and by Lemma 2.6, we are left to show 
that the determinants of the submatrices which are lying in the first and last columns of 
Z(1|−] and which are formed from consecutive columns with the exception of a gap of 
one column are all nonnegative. These are the minors detZ(1|1, . . . , j − 1, j + 1, . . . , n]. 
The entry in position (j, 1) of −SZ−1S is − detZ(1,j)

detZ which is nonnegative by (23), 
j = 2, . . . , n −1. Therefore, detZ(1, j) ≥ 0. To show that detZ[α|1, . . . , k] ≥ 0, α ∈ Qk,n, 
k = 1, . . . , n − 1, we proceed similarly. �

Using Theorem 5.2, we obtain the interval property of further classes of NsSR ma-
trices.
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Theorem 5.3. Let A, B, Z ∈ Rn,n be such that A ≤∗ Z ≤∗ B and let A and B be NsSR

matrices with the same signature ε = (ε1, . . . , εn). If ε is one of the following signatures:

(i) εi = (−1)i, i = 1, . . . , n − 1, εn = (−1)n−1,
(ii) εi = (−1)

i(i−1)
2 , i = 1, . . . , n − 1, εn = (−1)

n(n−1)
2 +1,

(iii) εi = (−1)
i(i+1)

2 , i = 1, . . . , n − 1, εn = (−1)
n(n+1)

2 +1,

then Z is NsSR with signature ε.

Proof. D := diag (−1, −1, . . . , −1) and Tn are NsSR matrices with signatures εi =
(−1)i and εi = (−1)

i(i−1)
2 , i = 1, . . . , n, respectively, and D−1 = D and T−1

n = Tn. 
Hence if A and B are NsSR matrices with the same signature which is given in one of 
(i)-(iii), then by [7, Theorem 3.1] the following hold. If ε is the signature in case

(i) then DA and DB,
(ii) then TnA and TnB,
(iii) then DTnA and DTnB

are NsTN−, and by Theorem 5.2, Z is an NsSR matrix with the same signature. �
Conclusion

In this paper, we have provided by using the Cauchon algorithm a new characterization 
of the matrices having all their proper minors nonnegative and a negative determinant, 
the class NsTN−. We have presented the maximum allowable perturbation of the most 
critical entry of such a matrix such that the perturbed matrix remains in the class. 
Finally, we have shown that the NsTN− matrices possess the interval property. This 
result provides a further class of nonsingular sign regular matrices which has the interval 
property [6].
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