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xv + 248 pp., Princeton Series in Applied Mathematics, ISBN

978-0-691-12157-4 cloth<

The monograph is intended as a self-contained development of the most fundamental properties

of the totally nonnegative (abbreviated henceforth by TN) and totally positive (TP) matrices, the class

of matrices which have all their minors nonnegative and positive, respectively. These matrices arise in

a remarkable variety of ways withinmathematics and inmany areas to whichmathematics is applied,

see the listing in Section 0.2 of the book under review.

For a long time, the only monographs on these matrices have been the books by Gantmacher and

Krein [3] and Karlin [5]; both appeared in the sixties. As an obstacle, the book by Gantmacher and

Krein was for a long time available only in Russian and German, with an English translation appearing

in 2002. 1 Ando collected 1984 or earlier in the survey paper [1] most of the properties of TNmatrices

known at that time. Another source of information was the collection of 23 papers [4] presented at a

workshop on total positivity held in 1994 in Jaca, Spain. A considerable amount of research has been

done since then. So the time was ripe for an update and extension of the preceding monographs.

In 2010, the monograph by Pinkus [8] was published. 2 He prefers the terms totally positive and

strictly totally positive (which is the terminology used in [5]) instead of totally nonnegative and totally

positive (used in [3]). Since the book under reviewwas published only about one year later it is natural

to compare both books. Purely quantitatively, the book by Pinkus is about three quarters of the extent

of the book by Fallat and Johnson.

The book by Fallat and Johnson has 11 chapters. As in the book by Pinkus, nearly all chapters start

with an introduction into the theme of the chapter, often followed by a section in which the necessary

definitions, notations, and terms used within this chapter are given. The Introduction in Chapter 0

provides the basic definitions and notation as well as many examples of TNmatrices; here tridiagonal

matrices are discussed in detail. Applications of the TNmatrices are presented, ranging fromTP kernels

to B-splines. Special emphasis is put on the strong relation to Pólya frequency functions which has

produced numerous important results and associated applications.

< A working list of errata can be found under http://www.math.uregina.ca/∼sfallat/Research/tnbook.html.
1 Besides an English translation which appeared as document AEC-tr-4481 (physics) of the Office of Technical Documentation,

Department of Commerce, Washington, DC, in April 1961.
2 See the review of this book in this journal, vol. 433 (2010), pp. 1052–1053.
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Chapter 1 provides the elementary and fundamental properties of TN matrices along with some

other useful backgroundmaterial frommatrix theory. Chapter 2 is devoted to the important and useful

tool of bidiagonal factorization. Many of the results on TN matrices can be derived from the fact that

any TN matrix admits a factorization into TN bidiagonal matrices, e.g., from this factorization follow

the fact that the TN matrices are the topological closure of the TP matrices and a test for an entrywise

nonnegative matrix for being TN/TP as well as a procedure for the construction of TN/TP matrices.

The bidiagonal factorization is put into historical perspective, viz. it can be traced back to a paper

by Anne Whitney dated from 1952 [9] in which a lemma is proven that may be used to deduce the

existence of such a factorization. The bidiagonal factorization is now recognized as the fundamental

parametrization of TN matrices. In this chapter, the representation of a bidiagonal factorization in

terms of planar diagrams is also introduced, which is employed in the following chapters to prove

many results.

Chapter 3 answers the question of theway inwhich a givenmatrix can be efficiently tested for being

TN or TP. In the next chapter the key results concerning the sign variation diminution of TN and TP

matrices are developed, a property which is important for application in Computer Aided Geometric

Design, e.g., a linear transformation which is associated with a TP matrix cannot increase the number

of the sign changes in a vector.

In Chapter 5 the eigen-structure of square TNmatrices is explored. Since TNmatrices are entrywise

nonnegative, the Perron–Frobenius theory applies. But by the special structure of the TN matrices

much more can be said about their eigenvalues (they are nonnegative) and the sign patterns of the

entries of the eigenvectors. The eigenvalues of an oscillatory matrix, 3 which is a TN matrix with a

TP integral power, are all positive and distinct. Other spectral properties investigated in this chapter

are: the interlacing of the eigenvalues of a TNmatrix and those of some special principal submatrices,

majorization between the eigenvalues and the diagonal elements, eigenvalue inequalities for products

of TN matrices, as well as some inverse eigenvalue problems. In Chapter 6 determinantal inequalities

for TNmatrices are presented. Herein it is shown that some classical determinantal inequalities due to

Hadamard, Fischer, and Koteljanskiı̌ are members of a class of general multiplicative principal minor

inequalities.

The remaining four chapters cover a wide range of specialized topics: the distribution of rank

deficient submatrices within a TN matrix (Chapter 7), the Hadamard (i.e., the entrywise) product of

TN matrices (Chapter 8), various aspects of matrix completion problems associated with TN matrices

(Chapter9).Of special interest is Section9.5 inwhich thequestion ispartially answeredwhichentriesof

a TN/TPmatrixmay be increased or decreasedwithout losing the property of being a TN/TPmatrix. The

results confirm thepractical experience of ones ownworkwith TNmatrices. Often a small perturbation

of some entries in a TNmatrix leads to amatrixwhich is not TN (in contrast to other classes ofmatrices

like theMmatrices). As a useful result, themaximumallowable perturbations of some single entries of

a TN/TPmatrix are now quantified. The book is concludedwith a brief review of a number of subtopics

connected with TNmatrices, including powers and roots, subdirect sums, and Perron complements of

TN matrices as well as TP/TN polynomial matrices.

The book provides a bibliography of 20 pages length of papers which are cited in the text or others

of potential interest to readers (compared to only six pages in Pinkus’ book). The bibliography is largely

complete. Among the references I ammissing are the book [7] on the relation of TN matrices to shape

preserving representations in Computer Aided Geometric Design (with a reference in Section 0.2, see

below), a paper by R.A. Brualdi and S. Kirkland [2] on TN (0,1)-matrices which contains the result of

Theorem 1.6.9, and papers by K.R. Goodearl, S. Launois, and T.H. Lenagan which relate TN matrices

with quantummatrices and matrix Poisson varieties, e.g. [6]. However, these papers appeared during

the final stages of writing the book, or even later. A comprehensive list of symbols used in the text (of

five pages length) at the end of the book facilitates the reading.

A book on TNmatrices cannot cover all aspects of the theory and applications. So, in the book under

review some are only surveyed, e.g., the relation of TN matrices to shape preserving representations

in Computer Aided Geometric Design, e.g. [7]. The book “takes a core, matrix theoretic perspective

3 Such a matrix is called an oscillation matrix in Pinkus’ book.
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common to all sources of interest in the subject” (p. xiii). As such, numerical issues, e.g., accurate

computations with TN matrices are beyond its scope. However, a more algorithmic description of the

Neville algorithm and a detailed presentation of its properties (which are somewhat scattered in the

text) would have been helpful for those who want to apply this useful tool to practical problems.

The book by Fallat and Johnson is clearly written and very well organized. The proofs are given in

necessary detail. Many parts of the book heavily reflect the authors own research, and as a result the

presentation is always at the frontline of current research. A good example is Chapter 7, in which the

distribution of ranks among submatrices of a TNmatrix is explored, which is less free than in a general

matrix. It seems that the main results of this chapter are not published by the authors prior to the

appearance of the book.

Comparing it with Pinkus’ book I would recommend Pinkus’ book to a reader who is mainly inter-

ested in the classical theory and the historical aspects; as such it is largely self-contained and perfectly

suited as a classroom text (although the important topic of bidiagonalization is not made an integral

part of the theoretical development). The book by Fallat and Johnson is of greatest value and indis-

pensable for an active researcher in the field of TNmatrices and related fields and will certainly be the

future reference book for TNmatrices, as the booksMatrix Analysis and Topics in Matrix Analysis by one

of the authors (C.R.J.) and R.A. Horn became for matrix theory.

References

[1] T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987) 165–219.
[2] R.A. Brualdi, S. Kirkland, Totally nonnegative (0,1)-matrices, Linear Algebra Appl. 432 (2010) 1650–1662.

[3] F.R. Gantmacher, M.R. Krein, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme,
Akademie-Verlag, Berlin, 1960., for the Russian original and the English translation see the book under review and [8].

[4] M. Gasca, C.A. Micchelli (Eds.) Total Positivity and its Applications, Series Mathematics and its Applications, vol. 359, Kluwer

Academic Publishers, Dordrecht, Boston, and London, 1996.
[5] S. Karlin, Total Positivity Volume I, Stanford University Press, Stanford, CA, 1968.

[6] S. Launois, T.H. Lenagan, From totally nonnegative matrices to quantum matrices and back, via Poisson geometry, in:
Proceedings of the Belfast Workshop on Algebra, Combinatorics and Dynamics 2009, in press, posted at arXiv:0911.2990.

[7] J.M. Peña (Ed.), Shape Preserving Representations in Computer-Aided Geometric Design, Nova Science Publishers, Commack,
NY, 1999.

[8] A. Pinkus, Totally Positive Matrices, Cambridge Tracts in Mathematics, vol. 181, Cambridge University Press, Cambridge, UK,
2010.

[9] A.M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math. 2 (1952) 88–92.

Jürgen Garloff

University of Applied Sciences/HTWG Konstanz,

P.O. Box 100543, D-78405 Konstanz, Germany

E-mail address: garloff@htwg-konstanz.de


