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In this paper totally nonnegative (positive) matrices are considered which are 
matrices having all their minors nonnegative (positive); the almost totally positive 
matrices form a class between the totally nonnegative matrices and the totally 
positive ones. An efficient determinantal test based on the Cauchon algorithm for 
checking a given matrix for falling in one of these three classes of matrices is applied 
to matrices which are related to roots of polynomials and poles of rational functions, 
specifically the Hankel matrix associated with the Laurent series at infinity of a 
rational function and matrices of Hurwitz type associated with polynomials. In both 
cases it is concluded from properties of one or two finite sections of the infinite matrix 
that the infinite matrix itself has these or related properties. Then the results are 
applied to derive a sufficient condition for the Hurwitz stability of an interval family 
of polynomials. Finally, interval problems for a subclass of the rational functions, 
viz. R-functions, are investigated. These problems include invariance of exclusively 
positive poles and exclusively negative roots in the presence of variation of the 
coefficients of the polynomials within given intervals.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider matrices which are related to stability of polynomials and to the localization 
of the poles and zeros of rational functions. Specifically, in the case of polynomials we focus on matrices of 
Hurwitz type which are closely related to (Hurwitz) stability of a polynomial, i.e., to the property that all 
zeros are contained in the open left half of the complex plane. In the case of rational functions we focus on 
R-functions of negative type, i.e., functions which map the open upper half-plane of the complex plane to 
the open lower half-plane. For references and properties of this important class of functions the reader is 
referred to the survey given in [14]. In the polynomial as well as in the rational case we are interested in 
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interval problems which arise when the polynomial coefficients are due to uncertainty caused by, e.g., data 
uncertainties but can be bounded in intervals. For background material from control theory and practical 
applications see [4,5]. It turns out that certain properties concerning the zeros and the poles remain in force 
through all the coefficient intervals if up to four polynomials of the entire family have certain properties. 
Typically, the coefficients of these polynomials alternate in attaining the endpoints of the coefficient intervals. 
This up-and-down behavior corresponds to a checkerboard pattern of the entries of the associated matrices.

The underlying property of all the matrices considered in this paper is that all their minors are nonneg-
ative. Such matrices are called totally nonnegative. For properties of these matrices the reader is referred 
to the monographs [6,18]. In [2] we derive an efficient determinantal test based on the Cauchon algorithm 
[12,17] for checking a given matrix for total nonnegativity and related properties. In this paper we apply 
this test to the matrices mentioned above. To solve the related interval problems we make use of a result 
in [1] by which from the nonsingularity and the total nonnegativity of two matrices we can infer that all 
matrices lying between these two matrices are nonsingular and totally nonnegative, too. Here ‘between’ is 
meant in the sense of the checkerboard ordering, see above.

The organization of our paper is as follows. In the next section we first introduce the notation and the 
definitions and recall then some properties of the totally nonnegative matrices which we will use in our 
paper. We also briefly recall the Cauchon algorithm and characterizations of two subclasses of the totally 
nonnegative matrices. In Section 3 we show that from properties of finite sections of an infinite Hankel 
matrix or matrix of Hurwitz type we may conclude that the infinite matrix itself possesses these or related 
properties. We also derive a sufficient condition for the stability of an interval family of polynomials. In 
Section 4 we present interval problems related to R-functions.

2. Notation and auxiliary results

For nonnegative integers k, n we denote by Qk,n the set of all strictly increasing sequences of k integers 
chosen from {1, 2, . . . , n}. For α = (α1, α2, . . . , αk) ∈ Qk,n and β = (β1, β2, . . . , βl) ∈ Ql,m, we denote by 
A[α|β] the k × l submatrix of A contained in the rows indexed by α1, α2, . . . , αk and columns indexed by 
β1, β2, . . . , βl. We suppress the parentheses when we enumerate the indices implicitly. When α = β, the 
principal submatrix A[α|α] is abbreviated to A[α]; if α = β = (1, . . . , k) the submatrix is called a leading
principal submatrix. We denote by | α | the number of members of α. If k = l and A[α|β] is formed from 
consecutive rows and columns of A then it is called contiguous and its determinant is termed a contiguous
minor. A matrix A ∈ R

m,n is called totally positive (abbreviated TP henceforth) and totally nonnegative
(abbreviated TN ) if detA[α|β] > 0 and detA[α|β] ≥ 0, respectively, for all α ∈ Qk,m, β ∈ Qk,n. If A ∈ R

n,n

is TN and in addition nonsingular we write A is NsTN . In [9] Gasca et al. define the following class of 
matrices intermediate between the totally nonnegative and the totally positive matrices. If A ∈ R

m,n is TN
it is said to be almost totally positive (abbreviated ATP) if it satisfies the following two conditions:

(i) Any contiguous minor of A is positive if and only if the diagonal entries of the corresponding submatrix 
are positive.

(ii) In the case that A has a zero row or column, the subsequent rows or columns also are zero, respectively.

It was proven in [9] that if A is ATP then (i) holds for any minor of A (not only for the contiguous ones). If 
A is ATP and in addition it is nonsingular then we write A is NsATP. These matrices were also introduced 
independently in [11]. For further properties see [10].

We endow Rm,n with two partial orderings: Firstly, with the usual entry-wise ordering (A = (aij), 
B = (bij) ∈ R

m,n)

A ≤ B ⇔ aij ≤ bij , i = 1, . . . ,m, j = 1, . . . , n.
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Fig. 1. Example of a 4 × 4 Cauchon diagram.

Secondly, with the checkerboard partial ordering, which is defined as follows: Let Δr := diag(1, −1, . . . , (−1)r+1

and A∗ := ΔmAΔn.
Then we define

A ≤∗ B ⇔ A∗ ≤ B∗.

These definitions extend verbatim to infinite matrices. An infinite matrix is said to have rank r if all its 
minors of order greater than r are zero and there exists at least one nonzero minor of order r. If in addition 
all its minors up to order r (inclusive) are positive then the matrix is said to be TPr of rank r.

The following theorem gives an important property of the nonsingular totally nonnegative matrices.

Lemma 2.1. [6, Corollary 3.8], [18, Theorem 1.13] All principal minors of an NsTN matrix are positive.

For reference in Section 4 we state a monotonicity property of the determinant and an interval property 
of the TN matrices.

Proposition 2.2. [1, Lemma 3.2] Let A, B, Z ∈ R
n,n, A be NsTN, B be TN and A ≤∗ Z ≤∗ B. Then 

detA ≤ detZ ≤ detB.

Theorem 2.3. [1, Theorem 3.6] Let A, B, Z ∈ R
n,n with A ≤∗ Z ≤∗ B. If A and B are NsTN, then Z is 

NsTN.

A direct consequence of the above theorem is the following corollary.

Corollary 2.4. [1, Remark 3.5] Let A, B, Z ∈ R
n,n with A ≤∗ Z ≤∗ B. If A and B are TP, then Z is TP.

A basis tool for obtaining our main results is the Cauchon algorithm [12,17] which we will introduce next. 
First we recall the definition of a Cauchon diagram and a Cauchon matrix.

Definition 2.5. An m-by-n Cauchon diagram C is an m ×n grid consisting of mn squares colored black and 
white, where each black square has the property that either every square to its left (in the same row) or 
every square above it (in the same column) is black. We identify the squares of C with coordinates and 
say (i, j) ∈ C and (i, j) /∈ C if the square in position (i, j) is black and white, respectively, i = 1, . . . , m, 
j = 1, . . . , n.

An example of a 4 × 4 Cauchon diagram is given in Fig. 1.

Definition 2.6. Let A ∈ R
m,n and let C be an m-by-n Cauchon diagram. We say that A is a Cauchon matrix 

associated with the Cauchon diagram C if for all (i, j), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} we have aij = 0 if 
and only if the square (i, j) in C is black. If A is a Cauchon matrix associated with an unspecified Cauchon 
diagram, we just say that A is a Cauchon matrix.
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In [12] and [17] the Cauchon algorithm is presented which is employed to check whether a given matrix A

is totally positive or totally nonnegative. The algorithm starts with A and produces a related matrix Ã. 
From the sign of the entries of Ã and its zero-nonzero pattern we can decide whether A is totally positive 
or totally nonnegative. A compressed form of the algorithm is given in [2].

To recall the Cauchon algorithm and a procedure based on it, we denote by ≤ and ≤c the lexicographic 
and colexicographic order, respectively, on N2, i.e.,

(g, h) ≤ (i, j) :⇔ (g < i) or (g = i and h ≤ j),

(g, h) ≤c (i, j) :⇔ (h < j) or (h = j and g ≤ i).

Set E◦ := {1, . . . ,m} × {1, . . . , n} \ {(1, 1)}, E := E◦ ∪ {(m + 1, 1)}.
Let (s, t) ∈ E◦. Then (s, t)+ := min {(i, j) ∈ E | (s, t) ≤ (i, j), (s, t) �= (i, j)}; here the minimum is taken 

with respect to the lexicographical order.

Cauchon algorithm: Let A ∈ Rm,n. As r runs in decreasing order over the set E, we define matrices 
A(r) = (a(r)

ij ) ∈ Rm,n as follows.

1. Set A(m+1,1) := A.
2. For r = (s, t) ∈ E◦ define the matrix A(r) = (a(r)

ij ) as follows.
(a) If a(r+)

st = 0 then put A(r) := A(r+).
(b) If a(r+)

st �= 0 then put

a
(r)
ij :=

⎧⎨
⎩ a

(r+)
ij − a

(r+)
it a

(r+)
sj

a
(r+)
st

for i < s and j < t,

a
(r+)
ij otherwise.

3. Set Ã := A(1,2)2; Ã is called the matrix obtained from A (by the Cauchon algorithm).

One of the efficient methods to check whether a given matrix is TN or TP is by using the Cauchon 
algorithm. The following theorem provides necessary and sufficient conditions for a given matrix to be TP, 
TN , or NsTN .

Theorem 2.7. [12, Theorem B4], [17, Theorems 2.6 and 2.7], [1, Proposition 2.8] The following statements 
hold.

(i) A ∈ R
m,n is TP (TN ) if and only if Ã is an entry-wise positive (nonnegative) Cauchon matrix.

(ii) If A ∈ R
n,n is TN then A is nonsingular if and only if 0 < ãii, i = 1, . . . , n.

The following definition presents a special type of finite sequences which play a fundamental role in 
characterizing and testing TN matrices.

Definition 2.8. Let C be an m-by-n Cauchon diagram. We say that a sequence

γ := ((ik, jk), k = 0, 1, . . . , p) (1)

which is strictly increasing in both arguments is a lacunary sequence with respect to C if the following 
conditions hold:

2 Note that A(k,1) = A(k,2), k = 1, . . . , m −1, and A(2,2) = A(1,2) so that the algorithm could already be terminated when A(2,2)

is computed.
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Fig. 2. Condition (iii)(a) of Definition 2.8.

Fig. 3. Condition (iii)(b) of Definition 2.8.

(i) (ik, jk) /∈ C, k = 1, . . . , p.
(ii) (i, j) ∈ C for ip < i ≤ m and jp < j ≤ n.
(iii) Let s ∈ {0, . . . , p− 1}. Then (i, j) ∈ C if

(a) either for all (i, j), is < i < is+1 and js < j,
or for all (i, j), is < i < is+1 and j0 ≤ j < js+1

and
(b) either for all (i, j), is < i and js < j < js+1

or for all (i, j), i < is+1, and js < j < js+1.

Condition (iii) of Definition 2.8 is illustrated by Figs. 2, 3; here the collection of black squares determined 
by Condition (a) or (b) (displayed in dark gray) is enlarged by taking into account that the underlying 
diagram is a Cauchon diagram (displayed in light gray). In Fig. 1, the sequence ((1, 1), (2, 3), (4, 4)) is a 
lacunary sequence while the sequence ((1, 1), (2, 2), (4, 4)) is not.

Definition 2.9. We say that a sequence γ given by (1) is diagonal if

(ik+1, jk+1) = (ik + 1, jk + 1), k = 0, 1, . . . , p− 1.

The following proposition gives the relationship between the minors associated with lacunary sequences 
and entries of Ã.

Proposition 2.10. [17, Proposition 4.1] Let A ∈ Rm,n be TN and γ given by (1) be a lacunary sequence with 
respect to the Cauchon diagram that is associated with Ã. Then

detA[i0, . . . , ip|j0, . . . , jp] = ãi0,j0 · ãi1,j1 · · · ãip,jp . (2)
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In [17, Section 3] an algorithm is presented which constructs for a given Cauchon diagram C and any 
square of C a lacunary sequence (with respect to C) starting at this square. In [2] we design a procedure by 
which for each entry ãi0,j0 of Ã a sequence γ given by (1) starting at position (i0, j0) is constructed (without 
explicit reference to a Cauchon diagram).

It is sufficient to describe the construction of the sequence from the starting pair (i0, j0) to the next pair 
(i1, j1) with 0 < ãi1,j1 since for a given matrix A the determinantal test in [2] is performed by moving row 
by row from the bottom to the top row. Once we have found the next index pair (i1, j1) we append to (i0, j0)
the sequence starting at (i1, j1). By construction, the sequence γ is uniquely determined (but not necessarily 
lacunary). If conditions (i) and (ii) of Theorem 2.13 below are fulfilled then all these sequences are lacunary.

In the following δij denotes the minor of A associated by (2) to the sequence starting at position (i, j)
which is constructed by the following procedure.

Remark 2.11. In [2] we present Procedure 2.12 and Theorem 2.13 below in terms of ãij but here we use δij . 
The reason is the following. First note that Ã[i0, . . . , m | j0, . . . , n] coincides with the matrix which is 
obtained by application of the Cauchon algorithm to A[i0, . . . , m | j0, . . . , n]. One can show by decreasing 
induction on the pairs (i, j) with respect to the lexicographical order and using (2) that the numerator of 
ãi0,j0 is equal to δi0,j0 for all i0 = 1, . . . , m, j0 = 1, . . . , n (if necessary add an artificial sufficiently large 
positive quantity t to ai0,j0 as in the proof of Theorem 3.1 in order to be able to apply Proposition 2.10). 
Therefore, the quantity δij determines whether ãij takes on a zero or nonzero values.

Procedure 2.12. [2, Procedure 5.2] Construction of the sequence γ given by (1) starting at (i0, j0) to the 
next index pair (i1, j1) in the TN case:

If i0 = m or j0 = n or S := {(i, j) | i0 < i ≤ m, j0 < j ≤ n, and 0 < δij} is void then terminate with 
p := 0;
else

if δij0 = 0 for all i = i0 + 1, . . . , m then put (i1, j1) := minS with respect to the colexicographic order
else
put i′ := min {k | i0 < k ≤ m such that 0 < δkj0},

J := {l | j0 < l ≤ n such that 0 < δi′,l};
if J is not void then put (i1, j1) := (i′, min J)
else put (i1, j1) := minS with respect to the lexicographic order;
end if

end if
end if .

Theorem 2.13. [2, Theorem 5.4] Let A ∈ R
m,n. Then A is TN if and only if for all i = 1, . . . , m, j =

1, . . . , n the quantities δij obtained by the sequences that start from positions (i, j) and are constructed by 
Procedure 2.12 satisfy the following conditions:

(i) 0 ≤ δij;
(ii) if δi′j′ = 0 for some i′ ∈ {1, . . . ,m}, j′ ∈ {1, . . . , n}, then δi′,t1 = 0 for all t1 < j′ or δt2,j′ = 0 for all 

t2 < i′.

If we proceed from row iμ + 1 to row iμ we already know the determinantal entries which appear in row 
iμ + 1 and therefore we can easily check when jμ < iμ whether all entries in the row iμ + 1 to the left of 
ãiμ+1,jμ+1 vanish. To check in the case iμ < jμ whether all entries in the column jμ + 1 above ãiμ+1,jμ+1
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vanish we have to compute in addition the minors which are associated with the positions (s, jμ + 1), 
s = 1, . . . , iμ. These minors differ in only one row index. Since a zero column stays a zero column through 
the performance of the Cauchon algorithm, the sign of altogether n ·m minors have to be checked (which 
also include trivial minors of order 1). If in Theorem 2.13, A ∈ R

n,n and 0 < δii for all i = 1, . . . , n, then A
is NsTN by Theorem 2.7 (ii).

The following theorem gives an efficient criterion for checking a nonsingular matrix for almost total 
positivity.

Theorem 2.14. [2, Theorem 5.10] Let A ∈ Rn,n be TN. Then the following two properties are equivalent:

(i) A is NsATP.
(ii) The matrix Ã (obtained from A by the Cauchon algorithm) has a positive main diagonal and the same 

zero–nonzero pattern of its entries as A.

We conclude this section with the following theorem which extends the above theorem to the general case. 
The proof uses the same arguments that have been employed in the proof of Theorem 5.10 in [2]. Note that 
zero rows and columns as in condition (ii) in the definition of an ATP matrix stay zero rows and columns, 
respectively, during the performance of the Cauchon algorithm. Also, sequences γ that are constructed 
according to Procedure 2.12 coincide with the sequences constructed when zero rows and columns are 
deleted.

Theorem 2.15. Let A ∈ Rm,n be TN. Then the following two properties are equivalent:

(i) A is ATP.
(ii) The matrix Ã (obtained from A by the Cauchon algorithm) has the same zero–nonzero pattern of its 

entries as A.

3. Total nonnegativity of Hankel and Hurwitz matrices and stability of polynomials

In this section we present some new characterizations and give for known results uniform and short proofs 
based on the application of the Cauchon algorithm and Theorems 2.7, 2.13, 2.14.

We start with the infinite Hankel matrix

S = (si+j)∞i,j=0, (3)

where si, i = 0, 1, . . . , are given real numbers. The following theorem characterizes totally nonnegative 
Hankel matrices (for the equivalence of (i) ⇔ (ii) see Theorem 4.4 and the references on p. 125 in [18]).

Theorem 3.1. Let S be a real infinite Hankel matrix of rank n. Let furthermore 1 < n and 0 ≤
detS[1, . . . , n|2, . . . , n + 1]. Put A := S[1, . . . , n] and B := A[1, . . . , n − 1 | 2, . . . , n]. Then the following 
three statements are equivalent:

(i) The matrices A and B are positive definite.
(ii) The Hankel matrix A is TP.
(iii) S is TN.

Proof. (i) ⇒ (ii) We first note that any principal minor of A and B is positive since A and B are positive 
definite matrices. According to Theorem 2.7 (i) it is sufficient to show that Ã is entry-wise positive. The 
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entries in the last row and column of Ã coincide with the respective entries in the last row and column 
of A and are positive since they appear on the main diagonal of A or B. Now we turn to the remaining 
entries of Ã and assume that there are entries which are not positive. Let (i0, j0) be the maximum element
of the set {1, . . . , n}2 with respect to the lexicographical order such that ãi0,j0 ≤ 0. We add to ãi0,j0 a 
sufficiently large positive number t to make ãi0,j0 + t positive and call D the matrix which is obtained from 
A[i0, . . . , n|j0, . . . , n] in this way. Then D̃ is entry-wise positive and the sequence γ given by (1) starting at 
position (i0, j0) found by Procedure 2.12 is diagonal. Note that d11 is identical with the entry in position 
(1, 1) of the matrix which is obtained by the application of Cauchon algorithm to the matrix which results 
from A[i0, . . . , n|j0, . . . , n] when adding t to ai0,j0 . Use of Proposition 2.10 and application of Laplace’s 
expansion to the minor of D associated to γ by (2) yields

detA[i0, . . . , ip|j0, . . . , jp] + t detA[i1, . . . , ip|j1, . . . , jp] =

ãi0,j0 · ãi1,j1 · · · ãip,jp + tãi1,j1 · · · ãip,jp .

A further application of Proposition 2.10 gives

detA[i1, . . . , ip|j1, . . . , jp] = ãi1,j1 · · · ãip,jp ,

whence

detA[i0, . . . , ip|j0, . . . , jp] = ãi0,j0 · ãi1,j1 · · · ãip,jp .

By the special pattern of the entries of A the minor on the left-hand side is a principal minor of A or B
hence it is positive. On the other hand, the product of the right-hand side is nonpositive by our assumption 
and we have arrived at a contradiction.

(ii) ⇒ (iii) Let A be TP and let Aμ := S[1, . . . , μ], μ = n, n + 1, . . . .

Claim. Aμ is TN and S[1, . . . , n − 1 | μ − n + 2, . . . , μ] is nonsingular for each μ = n, n + 1, . . . .

Proof of the Claim. The proof proceeds by induction. For μ = n the claim holds since A = An is TP. 
Suppose the claim holds for μ. We want to show that the claim holds for μ + 1. First of all we prove that 
S[1, . . . , n − 1 | μ − n + 3, . . . , μ + 1] is nonsingular. If it is singular, then let l be the smallest integer less 
than or equal to n − 1 such that S[1, . . . , l | μ − n + 3, . . . , μ − n + l + 2] is singular. By the special pattern 
of S we have

S[1, . . . , l | μ− n + 3, . . . , μ− n + l + 2] = S[2, . . . , l + 1 | μ− n + 2, . . . , μ− n + l + 1],

where the latter submatrix is a submatrix in Aμ. Since by the induction hypothesis Aμ is TN we conclude 
by [18, Proposition 1.15] that either S[2, . . . , l + 1 | 1, . . . , l] or S[1, . . . , l | μ − n + 2, . . . , μ − n + l + 1] is 
singular. In either case we have a contradiction since A is TP and by the induction hypothesis S[1, . . . , n −1 |
μ − n + 2, . . . , μ] is NsTN . If detS[1, . . . , n | 2, . . . , n + 1] is positive then by proceeding as above we show 
that S[1, . . . , n | μ − n + 2, . . . , μ + 1] is nonsingular for each μ = n, n + 1, . . . provided that Aμ is TN . It 
remains to prove that Aμ+1 is TN . We distinguish the following two cases:
Case 1: detS[1, . . . , n | 2, . . . , n + 1] is zero.

We first show that the (n +1)th row can be written as a linear combination of the 2nd, 3rd, . . . , and nth
rows. By [7, Theorem 7, p. 205] the (n +1)th row can be written as a linear combination of the 1st, 2nd, . . . , 
and nth rows, i.e., if R1, R2, . . . , Rn+1 represent the first n +1 rows of S, then there exist r1, r2, . . . , rn ∈ R

such that

Rn+1 =
n∑

riRi. (4)

i=1
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By (4), symmetry of S, and determinantal properties we obtain

detS[1, . . . , n | 2, . . . , n + 1] = detS[2, . . . , n + 1 | 1, . . . , n]

= (−1)n−1r1 detS[1, . . . , n]

and consequently r1 = 0 since 0 < detS[1, . . . , n] and detS[1, . . . , n | 2, . . . , n + 1] = 0. Therefore by (4), 
Rn+1 can be written as a linear combination of R2, . . . , Rn. Let C be the square Cauchon diagram of order 
μ +1 that is defined by (i, j) ∈ C if and only if (i, j) ∈ {1, . . . , μ− n + 1}2 or i = μ −n +2, j = 1, . . . , μ −n +1
or i = 1, . . . , μ − n + 1, j = μ − n + 2 and let E be the matrix that is obtained from Aμ+1 by reversing 
the order of its rows and columns, i.e., Aμ+1 is read from bottom right instead of the top left. We want to 
show that E is TN and associated to the Cauchon diagram C. For each position (i0, j0) ∈ {1, . . . , μ + 1}2

fix a lacunary sequence given by (1) with respect to C as follows: If μ − n + 2 ≤ i0 or μ − n + 2 ≤ j0, then 
ik+1 := ik + 1 and jk+1 := jk + 1 for k = 0, 1, . . . , p − 1. If i0 ≤ μ − n + 1 and j0 ≤ μ − n + 1, then set 
(i1, j1) := (μ −n + 2, μ −n + 2) and ik+1 := ik + 1, jk+1 := jk + 1 for k = 1, . . . , p − 1. Then it is easy to see 
that all these sequences are lacunary with respect to C. The minors that are associated with the lacunary 
sequences that start from (i0, j0) such that (i0, j0) /∈ C are positive since A is TP and Aμ is TN and hence 
S[1, . . . , n − 1 | v − n + 2, . . . , v] is NsTN for each v = n, n + 1, . . . , μ + 1. The minors associated with the 
lacunary sequences that start from the positions (i0, j0) such that i = μ − n + 2 and j = 1, . . . , μ − n + 1
or i = 1, . . . , μ − n + 1 and j = μ − n + 2 are zero since the (n + 1)th row (column) can be written as a 
linear combination of the 2nd, 3rd, . . . , nth rows (columns) of S. The minors associated with the lacunary 
sequences that start from the positions (i0, j0) such that (i0, j0) ∈ {1, . . . , μ− n + 1}2 are zero since such 
minors have order n + 1 and consequently are zero because the rank of S is n. Thus by [17, Theorem 4.4]
E and hence Aμ+1 are TN .
Case 2: detS[1, . . . , n | 2, . . . , n + 1] is positive.

The proof is analogous to Case 1 but with a different Cauchon diagram C. In this case we let C be the 
square Cauchon diagram of order μ +1 that is defined by (i, j) ∈ C if and only if (i, j) ∈ {1, . . . , μ− n + 1}2.

(iii) ⇒ (i) Since S is TN and has rank n we may conclude by [14, Theorem 1.2] that A is NsTN and 
because A is symmetric it is positive definite by Lemma 2.1. The entry B[1|1] = s1 must be positive because 
otherwise it would follow by 0 < s2 that detS[1, 2|2, 3] < 0 contradicting the fact that S is TN . So we may 
assume that 3 ≤ n. Suppose that B is singular and let r be the smallest integer such that detB[1, . . . , r] = 0. 
Then it follows that 2 ≤ r ≤ n − 1. By application of [18, Proposition 1.15] to C := S[1, . . . , n + 1] at least 
one of the following holds. Either the rows 1, . . . , r or the columns 2, . . . , r + 1 of C are linearly dependent 
or one of the matrices C[1, . . . , n + 1|1, . . . , r + 1] and C[1, . . . , r|2, . . . , n + 1] has rank r − 1. Since A is 
nonsingular only the last case could be possible. However, this matrix possesses C[1, . . . , r|3, . . . , r + 2] as a 
submatrix which is identical with the principal submatrix A[2, . . . , r + 1]. Since its determinant is positive 
we have arrived at a contradiction. Hence B is nonsingular and because it is furthermore symmetric and 
TN it is positive definite. �

Let p and q be polynomials with real coefficients

p(z) := a0z
n + a1z

n−1 + . . . + an, a0 �= 0, (5)

q(z) := b0z
n + b1z

n−1 + . . . + bn. (6)

Define the (in)finite matrices of Hurwitz type as follows depending on the case whether b0 vanishes or not. 
We set ak := 0 and bk := 0 for k > n.

If deg q < deg p, that is, if b0 = 0, then:
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H(p, q) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 a4 a5 . . .

0 b1 b2 b3 b4 b5 . . .

0 a0 a1 a2 a3 a4 . . .

0 0 b1 b2 b3 b4 . . .
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
, (7)

H2n(p, q) := H[2, . . . , 2n + 1]; (8)

if deg q = deg p, that is, b0 �= 0, then

H(p, q) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

b0 b1 b2 b3 b4 b5 . . .

0 a0 a1 a2 a3 a4 . . .

0 b0 b1 b2 b3 b4 . . .

0 0 a0 a1 a2 a3 . . .
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
, (9)

H2n(p, q) := H[2, . . . , 2n + 2]. (10)

The matrices H(p, q) and H2n(p, q) are called infinite and finite matrices of Hurwitz type, respectively.

Theorem 3.2. Let H(p, q) and H2n(p, q) be given as in (7)–(10), respectively. Then the following three 
statements are equivalent:

(i) The matrix H2n(p, q) is NsTN.
(ii) The matrix H2n(p, q) is ATP and 0 < ai, bi, i = 1, . . . , n.
(iii) The matrix H(p, q) is ATP and 0 < ai, bi, i = 1, . . . , n.

Proof. (i) ⇒ (ii) By Theorem 2.7, H̃2n(p, q) is a nonnegative Cauchon matrix with positive diagonal entries. 
The entries a1, . . . , an, b1, . . . , bn appear on the main diagonal of H2n(p, q) and are therefore positive by 
Lemma 2.1. If b0 �= 0 then the assumption H2n(p, q) is NsTN shows that b0 cannot be negative.

In order to show that the matrix H2n(p, q) is ATP it is sufficient by Theorem 2.14 to show that the 
zero–nonzero pattern of H2n(p, q) = (hij) and H̃2n(p, q) coincide, i.e., the minors associated with lacunary 
sequences that are constructed by Procedure 2.12 and start at positions (i, j) such that hij = 0 are zero 
while those that start at positions (i, j) such that hij �= 0 are positive.

By application of Procedure 2.12 we find for each entry of H̃2n(p, q) a lacunary sequence starting from 
the position of this entry. Any minor associated with a lacunary sequence that starts from a position (i, j)
with hij = 0 vanishes since this minor contains a zero row or column. Any minor associated with a lacunary 
sequence that starts from a position (i, i) or (i, j) such that j < i and hij �= 0 is a principal minor of 
H2n(p, q) possibly multiplied by a0 (b0). While the minors that are associated with the lacunary sequences 
that start from positions (i, j) such that i < j and hij �= 0 are principal minors of H2n(p, q) possibly 
multiplied by some integer power of an. Therefore all minors associated with the lacunary sequences that 
start from positions (i, j) with hij �= 0 are positive by Lemma 2.1. Hence H2n(p, q) and H̃2n(p, q) have the 
same zero–nonzero pattern.

(ii) ⇒ (iii) Without loss of generality we consider only the case b0 = 0. Let Aν := H(p, q)[1, . . . , ν], 
ν ≥ 2n + 1. Then Aν tends to H(p, q) as ν tends to infinity and any submatrix of H(p, q) appears as a 
submatrix of a suitably chosen Aν0 . We want to show that Aν is ATP for each ν ≥ 2n + 1. The contiguous 
minors of A2n+1 coincide with minors of H2n(p, q) possibly multiplied by a0 > 0 or vanish. Hence A2n+1 is 
ATP since H2n(p, q) is ATP by assumption. Suppose now that Aν is ATP. Any contiguous minor of Aν+1
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appears as a minor of Aν possibly multiplied by an or vanishes. Hence Aν+1 is ATP and by induction we 
obtain that H(p, q) is ATP.

(iii) ⇒ (i) Since H2n(p, q) is a principal submatrix of H(p, q) with positive diagonal entries the result 
follows. �
Theorem 3.3. The matrix H2n(p, q) is ATP and 0 < ai, bi, i = 1, . . . , n, if and only if all its leading principal 
minors are positive.

Proof. If H2n(p, q) is ATP and 0 < ai, bi, i = 1, . . . , n, then all its principal minors are positive by 
Theorem 3.2. The converse is a special case of [13, Theorem 2.1], see also [18, Theorem 4.6]. �

We note that the more general result in [13], can also be proven by using the Cauchon algorithm. However, 
since our proof is not considerably shorter than the proofs in [13] and [18] we will not give it here.

By identification of the coefficients bi with the odd indexed and the coefficients ai with the even indexed 
coefficients of a polynomial, for simplicity p given by (5) say, we obtain from (8) the Hurwitz matrix 
H(p) = (hij) associated with p defined by

hij :=
{

a2j−i for 0 ≤ 2j − i ≤ n,

0 otherwise,

such that

H(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 a7 . . . 0 0
a0 a2 a4 a6 . . . 0 0
0 a1 a3 a5 . . . 0 0
0 a0 a2 a4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . an−1 0
0 0 0 0 . . . an−2 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Definition 3.4. A polynomial is called (Hurwitz) stable if all its zeros are inside the open left half of the 
complex plane.

By Hurwitz’s Theorem, see, e.g., [18, p. 117], p is stable if all leading principal minors of H(p) and a0
are positive. The following theorem provides a converse statement.

Theorem 3.5. [15, Theorem 2] Let p be given as in (5) with 0 < a0. If p is stable, then H(p) is NsATP.

Proof. We proceed by induction on n. The statement is obviously true for n = 2. Suppose that f given 
by (5) is stable. Consider the polynomial q of degree n − 1, defined by

q(z) := a1z
n−1 + (a2 − a3

a0

a1
)zn−2 + a3z

n−3 + (a4 − a5
a0

a1
)zn−4 + . . . .

Then q is the polynomial which corresponds to the second and third rows of the Routh scheme associated 
to p, see, e.g., [7, Chapter XV, §3], since p is stable it follows by the Routh’s Criterion, see [7, p. 180], that 
q is stable, too, and 0 < a1. Hence by the induction hypothesis H(q) is NsATP. By Theorem 2.7 H̃(q) is a 
nonnegative Cauchon matrix with positive diagonal entries and by Theorem 2.14 H(q) and H̃(q) have the 
same zero–nonzero pattern. Let H1(p) be the matrix that is obtained from H(p) by subtracting from each 
even indexed row the preceding row multiplied by a0 and storing the resulting row in this even indexed 
a1



JID:YJMAA AID:19775 /FLA Doctopic: Miscellaneous [m3L; v1.160; Prn:24/09/2015; 13:40] P.12 (1-18)
12 M. Adm et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
row. It is easy to see that H(q) = H1(p)[2, . . . , n] and therefore, H1(p)[2, . . . , n] and H̃1(p)[2, . . . , n] have 
the same zero–nonzero pattern; note that H̃1(p)[2, . . . , n] coincides with the matrix which is obtained by 
application of the Cauchon algorithm to H1(p)[2, . . . , n]. Since 0 < a1 it follows that H1(p) and hence H(p)
are nonsingular.

The minors of H1(p) that are associated with the sequences which are constructed by Procedure 2.12
and are starting at the positions (1, l), l = 2, . . . , 

⌈
n
2
⌉
, are equal to the minors that are associated with 

the lacunary sequences that are starting from the positions (3, l + 1) multiplied by an. The minor that 
is associated with the sequence that starts at the position (1, 1) is equal to detH1(p) and hence positive. 
The minors that are associated with the sequences that are starting from the other positions of the first 
row and column are zero since the corresponding submatrices have a zero row or column. Hence H̃1(p) is 
a nonnegative Cauchon matrix with positive diagonal entries. Moreover, H1(p) and H̃1(p) have the same 
zero–nonzero pattern. Thus by Theorem 2.14 H1(p) is NsATP.

We access the entries of H(p) through the entries of H1(p); by adding to each even indexed row in H1(p)
the preceding row multiplied by a0

a1
. Hence by determinantal properties we obtain that H(p) is NsTN . By 

application of Procedure 2.12 to H(p) we find for each position (k, l), k, l = 1, . . . , n, a lacunary sequence 
starting from there. By the special pattern of the entries of H(p) = (hkl) the minors associated with the 
lacunary sequences which start from positions (k, l) such that hkl �= 0 are principal minors in H(p), or 
principal minors multiplied by some integral power of an, or principal minors multiplied by a0. Hence by 
Lemma 2.1 they are positive. The minors that are associated with the lacunary sequences which start from 
positions (k, l) such that hkl = 0 are zero since the corresponding submatrices contain a zero row or column. 
Hence H(p) and H̃(p) have the same zero–nonzero pattern. Whence it follows by Theorem 2.14 that H(p)
is NsATP. �

We now turn to the case when the coefficients of a polynomial are not exactly known (due to, e.g., data 
uncertainties) but can be bounded,

ak ∈ [ak, ak], k = 0, 1, . . . , n. (12)

We want to know whether all polynomials p given by (5) satisfying (12) are stable. Intervals of stable 
polynomials are investigated in [16], see also [4], [5]; also the fact that the Hadamard product of two stable 
polynomials is stable is proved in [8].

Let HI be the following (n +1) ×n matrix whose entries are composed from the endpoints of the intervals 
given by (12) (ak := 0 and ak := 0 for k > n)

HI :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 a7 a9 a11 . . .

a0 a2 a4 a6 a8 a10 . . .

0 a1 a3 a5 a7 a9 . . .

0 a0 a2 a4 a6 a8 . . .

0 0 a1 a3 a5 a7 . . .

0 0 a0 a2 a4 a6 . . .

0 0 0 a1 a3 a5 . . .

0 0 0 a0 a2 a4 . . .
...

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Let H1 := HI [1, . . . , n − 1] and H2 := HI [3, . . . , n + 1|2, . . . , n]. Assume that HI is an ATP and ak >

0, k = 0, 1, . . . , n. Then H1 and H2 also are ATP since they are submatrices of HI . Moreover, the entries 
on the main diagonal of H1 and H2 are positive. Hence H1 and H2 are NsTN . Furthermore, we see that 
H1 ≤∗ H2.
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Theorem 3.6. If H1 and H2 are NsTN, then all polynomials p given by (5) satisfying (12) are stable.

Proof. Let p be any polynomial satisfying (12) and H(p) be its Hurwitz matrix. Then it is easy to see that

H1 ≤∗ H(p)[1, . . . , n− 1] ≤∗ H2. (14)

By Theorem 2.3 H(p)[1, . . . , n − 1] is NsTN , hence p is stable by Hurwitz’s Theorem. �
In contrast to Kharitonov’s Theorem [16], see also [5, Theorem 5.1], which involves four polynomials 

whose coefficients are endpoints of the intervals (12), Theorem 3.6 also holds if a0 = 0 (but a1 > 0), i.e., 
this theorem holds if the interval polynomial contains polynomials of degree n − 1. However, our condition 
is not necessary. A counterexample is provided by the following example.

Example 3.7. Let the family of polynomials be given by

a0 = a0 = 1, a1 = 3.5, a2 = a3 = a1 = 6.5, a2 = a3 = 9.5, a4 = 1.5, a4 = 4.5.

Then all polynomials satisfying (12) are stable, see [3]. However, detH1 < 0.

The complexity of the stability test based on Theorem 3.6 is O(n2) for an nth degree polynomial; the 
test based on checking HI for being ATP requires slightly less operations.

4. Application to rational functions

In this section we use matrices considered in the preceding section for the study of interval problems 
involving rational functions. Let p and q be polynomials given by (5) and (6), respectively, and let the 
rational function R be defined by

R := q/p. (15)

Expand R into its Laurent series at ∞

R(z) = s−1 + s0

z
+ s1

z2 + s2

z3 + . . . . (16)

The infinite Hankel matrix (3) formed from the coefficients si of this series is denoted by S(R).

Definition 4.1. A rational function R is called an R-function of negative type (respectively, positive type) 
if it maps the open upper half-plane of the complex plane into the open lower half-plane (respectively, to 
itself).

R-functions are also called Nevanlinna, Herglotz, and Pick-functions. We will present our results only for 
R-functions of negative type since the corresponding results for R-functions of positive type can be obtained 
by replacing the function R by −R.

The following theorem plays a fundamental role in our results below.

Theorem 4.2. [14, Theorem 3.18] Let R be expanded as in (16). Then the following two statements are 
equivalent:

(i) R is an R-function of negative type and has exactly r poles all of which are positive.
(ii) The matrix S(R) is TPr of rank r.



JID:YJMAA AID:19775 /FLA Doctopic: Miscellaneous [m3L; v1.160; Prn:24/09/2015; 13:40] P.14 (1-18)
14 M. Adm et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
The above theorem is stated in [14] for s−1 = 0 but it is also obviously true without this assumption.

Theorem 4.3. Let R1, R2, and R3 be rational functions with series (16) involving coefficients si, ti, and di, 
i = −1, 0, 1, . . . , respectively. Assume that the coefficients satisfy for i ≥ 0 the following inequalities:

(−1)isi ≤ (−1)idi ≤ (−1)iti, i = 0, 1, . . . . (17)

If R1 and R2 are R-functions of negative type and both functions have exactly r poles all of which are 
positive, then R3 is an R-function of negative type and has exactly r poles all of which are positive.

Proof. By Theorem 4.2 S(R1) and S(R2) are TPr of rank r. Let S(R3)[α | β] be any contiguous submatrix 
of S(R3) such that | α |=| β |= r. Then as a consequence of (17) the inequalities

S(R1)[α | β] ≤∗ S(R3)[α | β] ≤∗ S(R2)[α | β]

or

S(R2)[α | β] ≤∗ S(R3)[α | β] ≤∗ S(R1)[α | β]

hold. Hence by Corollary 2.4, S(R3)[α | β] is TP, too, and by [6, Corollary 3.1.6] S(R3) is TPr. It re-
mains to show that the rank of S(R3) equals r. By adding a suitable positive number ε to s2r, t2r, d2r
we can accomplish that the modified leading principal submatrices of S(R1) and S(R2) of order r + 1
become TP. Thus also the modified leading principal submatrix of S(R3) of order r + 1 is TP. By 
using Proposition 2.2 and letting ε tend to zero we obtain that detS(R3)[1, . . . , r + 1] = 0 since 
detS(R1)[1, . . . , r + 1] = detS(R2)[1, . . . , r + 1] = 0. Repeating this process infinitely many times with 
each S(R3)[1, . . . , r + 1 | ν, . . . , ν + r], ν = 2, 3, . . . , we arrive at detS(R3)[1, . . . , r + 1 | ν, . . . , ν + r] = 0 for 
all ν = 1, 2, . . . . Hence for each ν = 1, 2, . . . there exist cν1 , cν2 , . . . , cνr ∈ R such that

S(R3)[r + 1 | ν, . . . , ν + r] = [cν1 cν2 . . . cνr ]S(R3)[1, . . . , r | ν, . . . , ν + r] (18)

since S(R3)[1, . . . , r+1 | ν, . . . , ν+r] has rank r and detS(R3)[1, . . . , r | ν, . . . , ν+r−1] is positive. Therefore 
by (18)

S(R3)[r + 1 | 2, . . . , r + 1] = [c11 c12 . . . c1r]S(R3)[1, . . . , r | 2, . . . , r + 1]

= [c21 c22 . . . c2r]S(R3)[1, . . . , r | 2, . . . , r + 1],

whence

([c11 c12 . . . c1r] − [c21 c22 . . . c2r])S(R3)[1, . . . , r | 2, . . . , r + 1] = 0. (19)

Since S(R3)[1, . . . , r | 2, . . . , r + 1] is nonsingular we conclude by (19)

[c11 c12 . . . c1r] = [c21 c22 . . . c2r]. (20)

Repeating the above steps we obtain c1j = cνj for each j = 1, . . . , r, ν = 1, 2, . . . . Hence the row r + 1 of 
S(R3) can be written as a linear combination of the previous rows and S(R3)[1, . . . , r] is nonsingular. Thus 
by [7, Theorem 7, p. 205] S(R3) has rank r. �

In passing we note that by using similar arguments as in the proof of Theorem 4.3 Markov’s Theorem, 
see, e.g., [7, Theorem 21, p. 242], can be easily proven.
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Theorem 4.4. Let R1 and R2 be as in Theorem 4.3 with coefficients satisfying (17). If R1 and R2 are 
R-functions of negative type and all poles of them are positive, then R1 and R2 have the same number of 
poles.

Proof. Suppose on the contrary that R1 has exactly r positive poles and R2 has exactly k, k > r, positive 
poles. Then by Theorem 4.2, S(R1) and S(R2) are TPr of rank r and TPk of rank k, respectively. By using 
Proposition 2.2 we arrive at the contradiction

0 < detS(R2)[1, . . . , r + 1|2, . . . , r + 2] ≤ detS(R1)[1, . . . , r + 1|2, . . . , r + 2] = 0.

If R1 has exactly k, k > r positive poles, and R2 possesses exactly r positive poles, then we arrive with 
Proposition 2.2 at the contradiction

0 < detS(R1)[1, . . . , r + 1] ≤ detS(R2)[1, . . . , r + 1] = 0.

Hence R1 and R2 have the same number of positive poles. �
The following two lemmata and theorem provide a further interval property of the rational functions.

Definition 4.5. We call the rational function R = q/p an R∗-function if R is an R-function of negative type 
with only negative zeros and q and p are coprime.

In order to avoid to distinguish the cases when the polynomial degree is even or odd we number the 
coefficients of a polynomial now in such a way that the coefficient indexed by 0 is the constant term. We 
affix superscripts to polynomial coefficients for reference to a specific polynomial. Without loss of generality 
we assume that the leading coefficients of all polynomials appearing in the assumptions of the following 
statements are positive.

Lemma 4.6. Let R1 = q1/p and R2 = q2/p be two R∗-functions, where deg q1 = deg q2 = n and deg p ∈
{n− 1, n, n + 1}. Then R = g1/p is an R∗-function provided that the coefficients of q1, q2, g1 satisfy the 
following inequalities

(−1)kaq1k ≤ (−1)kag1
k ≤ (−1)kaq2k , k = 0, 1, . . . , n. (21)

Proof. From the assumption (21) it follows that

q1(x) ≤ g1(x) ≤ q2(x) for all x ≤ 0.

Since q1 and q2 have only negative zeros, g1 and therefore R have only negative zeros, too. By a modification 
of the Hermite–Biehler Theorem, see, e.g., [14, Theorem 3.4] it is sufficient to show that the zeros of g1 and 
p are real, simple, and interlacing, i.e., between any two consecutive zeros of one of the polynomials there 
is exactly one zero of the other polynomial, and there exists a real number v such that

p(v)g′1(v) − p′(v)g1(v) < 0. (22)

By [14, Theorem 3.4] the zeros of each pair (q1, p) and (q2, p) are real, simple, interlacing, and for each real 
number w and i = 1, 2, we have

p(w)q′i(w) − p′(w)qi(w) < 0. (23)
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As in the proof of [5, Lemma 5.1], we obtain that the zeros of g1 and p are real, simple, and interlacing. By 
setting w = 0 in (23) and using (21), we get

ap0a
g1
1 − ap1a

g1
0 ≤ ap0a

q1
1 − ap1a

q1
0 < 0 (24)

Hence (22) is fulfilled. It remains to show that g1 and p are coprime. Suppose on the contrary that both 
polynomials have a zero, x0 say, in common. Then it follows by the interlacing property that q1(x0) < 0 <
q2(x0). We first consider the case when x0 is greater than the largest zero of q2. Let x′

0 be the next (smaller) 
zero of p. Then 0 < q1(x′

0) ≤ q2(x′
0), a contradiction because q2 cannot have a simple zero between x′

0
and x0. If x0 is smaller than the largest zero of q2 we distinguish two cases. If p has a zero x′′

0 , x0 < x′′
0 , 

then we arrive likewise by 0 < q1(x′′
0) ≤ q2(x′′

0) at a contradiction. Otherwise we use the fact that 0 < q2(0)
to obtain a contradiction. This completes the proof that R is an R∗-function. �

By a similar proof we obtain the dual of Lemma 4.6.

Lemma 4.7. Let R1 = q/p1 and R2 = q/p2 be two R∗-functions, where deg q = n and deg p1 = deg p2 ∈
{n− 1, n, n + 1}. Then R = q/g2 is an R∗-function provided that the coefficients of p1, p2, g2 satisfy the 
following inequalities

(−1)kap1
k ≤ (−1)kag2

k ≤ (−1)kap2
k , k = 0, 1, . . . , n. (25)

By application of the two lemmata, we derive the following theorem.

Theorem 4.8. Let R11 = q1/p1, R12 = q1/p2, R21 = q2/p1, and R22 = q2/p2 be R∗-functions, where 
deg q1 = deg q2 = n and deg p1 = deg p2 ∈ {n− 1, n, n + 1}. Then R = g1/g2 is an R∗-function provided 
that the coefficients of qi, g1 and pi, g2, i = 1, 2, satisfy the inequalities (21) and (25), respectively.

Proof. Since R11 and R21 as well as R12 and R22 are R∗-functions we conclude from Lemma 4.6 that 
Rg

11 = g1/p1 and Rg
12 = g1/p2, respectively, are R∗-functions. By application of Lemma 4.7 to Rg

11 and Rg
12

we obtain that R is an R∗-function. �
In passing we note that with a matrix of type (13) and two submatrices like H1 and H2 we easily obtain 

using [14, Theorem 3.47] a theorem like Theorem 3.6 on an interval family of R-functions (15) of negative 
type with exactly n negative poles.

We conclude the paper by relating the coefficients of the representation of a rational function R in form 
of a Stieltjes continued fraction, see, e.g., [14, Section 1.5], to the entries of the matrix which is obtained 
by the application of the Cauchon algorithm to finite sections of the infinite Hankel matrix S(R) associated 
with R.

By [14, formulae (1.113)–(1.114), p. 453] the minors

Di(R) := detS[1, . . . , i], (26)

D̂i(R) := detS[1, . . . , i | 2, . . . , i + 1], i = 1, 2, . . . , r (27)

with D0(R) := D̂0(R) := 1, are connected with the coefficients of the Stieltjes continued fraction expansion 
through the relations

c2j =
−D2

j (R)
D̂j−1(R) · D̂j(R)

c2j−1 =
D̂2

j−1(R)
Dj−1(R) ·Dj(R) , j = 1, . . . , r, (28)

where r is the number of poles of the function R.



JID:YJMAA AID:19775 /FLA Doctopic: Miscellaneous [m3L; v1.160; Prn:24/09/2015; 13:40] P.17 (1-18)
M. Adm et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 17
In Theorem 3.1 we suppose that S has rank n. A theorem due to Kronecker, see, e.g., [7, p. 207], 
[14, Theorem 1.3], implies that the rational function

R(z) = s0

z
+ s1

z2 + . . .

has n poles. Let E be the matrix that is obtained from S[1, . . . , n + 1] by reversing the order of its rows 
and columns, i.e., S[1, . . . , n + 1] is read from the bottom right instead of the top left. Then by application 
of the Cauchon algorithm to E we obtain Ẽ which is a nonnegative Cauchon matrix. By Proposition 2.10

Di(R) = detE[n + 2 − i, . . . , n + 1]

= ẽn+2−i,n+2−i · ẽn+2−i+1,n+2−i+1 · · · ẽn+1,n+1,

D̂i(R) = detE[n + 2 − i, . . . , n + 1 | n + 1 − i, . . . , n]

= ẽn+2−i,n+1−i · ẽn+2−i+1,n+1−i+1 · · · ẽn+1,n,

for i = 1, . . . , n. Plugging the last expressions into (28) we obtain the relations (29), (30) in the following 
theorem. It shows that the coefficients cj of the Stieltjes continued fraction expansion can be recovered from 
the application of the Cauchon algorithm, i.e., the coefficients cj can be determined without the need to 
compute the underlying Hankel determinants Di(R) and D̂i(R) defined in (26) and (27), respectively. On 
the other hand, the Hankel determinants can be computed from the entries of the matrix Ẽ.

Theorem 4.9. Let S(R) be a real infinite Hankel matrix associated to the rational function R, let S(R) satisfy 
all the assumptions of Theorem 3.1 posed on S, and let E be defined as above. If any of the conditions 
(i)–(iii) of Theorem 3.1 holds for S(R), then the coefficients of the Stieltjes continued fraction expansion 
corresponding to the function R can be calculated as follows:

c2j =
−
∏j

i=1 ẽ
2
n+2−i,n+2−i

ẽn+2−j,n+1−j

∏j−1
i=1 ẽ2

n+2−i,n+1−i

, (29)

c2j−1 =
∏j−1

i=1 ẽ2
n+2−i,n+1−i

ẽn+2−j,n+2−j

∏j−1
i=1 ẽ2

n+2−i,n+2−i

, (30)

for j = 1, . . . , n.
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