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Abstract: We consider a statically determinate structural truss problem where all of the physical model parameters are uncertain: not 
just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented 
by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off 
errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters 
which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric 
system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening 
(pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed 
enclosures for the interval solutions for the forces and displacements. 
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1. Introduction  

Many sources of uncertainty exist in models for the 
analysis of structural mechanics problems. These 
include, e.g., measurement imprecision, 
manufacturing or fabrication imperfections, and 
round-off errors. An uncertain quantity is often 
assumed to be unknown but bounded, i.e., lower and 
upper bounds for this quantity can be provided 
(without assigning any probability distribution). 
Therefore, these quantities can be represented by 
intervals. Interval arithmetic, e.g., Refs. [1, 12], 
provides the means to keep track of such uncertainties 
throughout the whole computation. Consequently, the 
result, which is again an interval quantity, is 
guaranteed to contain the exact result. 

The numerical method most frequently used in 
structural mechanics is the finite element method 
(FEM). Its accuracy is affected by discretisation and 
rounding errors and model and data uncertainty. In 
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this paper we focus on parametric uncertainty and 
rounding errors. The source of parametric uncertainty 
(sometimes also called data uncertainty) is the lack of 
precise data needed for the analysis. In the FEM, 
parameters describing the geometry, material, and 
loads may be uncertain. Parametric uncertainty may 
result from a lack of knowledge (epistemic uncertainty 
or reducible uncertainty), e.g., loads are not exactly 
known, or an inherent variability (aleatory uncertainty 
or irreducible uncertainty) in the parameters, e.g., 
material parameters are only known to vary within 
known bounds, cf. [9]. 

For a decade or more the interval arithmetic 
approach has been used to handle parameter 
uncertainty in the application of the FEM to problems 
in structural mechanics, e.g., Refs. [3, 4, 10, 11, 
13-15], to name but a few. Most of these papers 
consider the case of affine parametric dependency. 
Typically, more advanced models involve polynomial 
or rational parameter dependencies, in which case the 
coefficients of the systems of linear equations to be 
solved are polynomial or rational functions of the 
parameters. In Ref. [5] we present an approach to 
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solve such systems. Therein we employ a 
general-purpose fixed-point iteration using interval 
arithmetic and an efficient method for bounding the 
range of a multivariate polynomial over a given box 
based on the expansion of this polynomial into 
Bernstein polynomials [6, 17]. As an example, we 
discuss a two-bay two-story frame involving 13 and 
37 parameters. 

The problem that the lengths of the bars of a truss 
system are uncertain, due to fabrication errors, is 
considered in Ref. [10]. However, in real-life 
problems, not only the lengths are uncertain but also 
the positions of the nodes are not exactly known. To 
the best of our knowledge, this problem has not been 
considered so far in the literature. 

In this paper we present a simple model with 
uncertain node locations, consisting of six linear truss 
elements joined at five nodes. As well as uncertain 
node coordinates, the material values (Young’s 
modulus and cross-sectional area) and loading forces 
are also interval parameters. As a consequence of the 
uncertain node locations, both the element lengths and 
angles in the problem are also interval values. With a 
suitable choice of variable substitution for the angles 
appearing in the system matrix, the resulting 
parametric system of linear equations is firstly solved 
by the aforementioned general-purpose parametric 
fixed-point iteration. However, the tightness of the 
resulting displacement intervals is not wholly 
satisfactory. Therefore, two interval pruning 
techniques are applied to compute and contract the 
interval enclosures for the element forces and node 
displacements. These intervals are compared to a tight 
inner estimation of the true interval solution obtained 
by a Monte Carlo simulation. 

This paper is organised as follows. The next section 
consists of a brief introduction to interval arithmetic. 
The model is then presented in detail in Section 3, 
along with its parameter values. The collection of 
methods used to solve the problem, including the 
iteration method for parametric systems and two 
interval pruning techniques are described in Section 4. 

The numerical results may be found in Section 5 and 
we conclude with some suggestions for continuation of 
this work. 

2. Interval Arithmetic 

Let IR denote the set of the compact, nonempty real 
intervals. The arithmetic operation /},,,{ ⋅−+∈o  on 

IR is defined in the following way. If 

∈],[=],,[= bbbaaa IR, then  

],,[= bababa +++          (1) 
],,[= bababa −−−          (2) 

}],,,,{max},,,,{min[= bababababababababa⋅ (3) 

.0if}],/,/,/,/{max

},/,/,/,/{min[=/

bbabababa

bababababa

∉
        (4) 

As a consequence of these definitions we obtain the 
inclusion isotonicity of the interval arithmetic 
operations: If ∈11,ba IR with aa ⊆1  and bb ⊆1  

then it holds that  
.11 baba oo ⊆             (5) 

Note that some relations known to be true in the set 
R, e.g., the distributive law, are not valid in IR. Here 
we have the weaker subdistributive law  

∈+⊆+⋅ cbaacabcba ,,for)( IR      (6) 
By IRn and IRnxn we denote the set of n -vectors 

and n -by- n  matrices with entries in IR, 
respectively. 

Further details on arithmetic with intervals may be 
found in Refs. [1, 12]. 

3. The Model 

We consider the simple mechanical truss structure 
comprising five nodes connected by six linear elements 
as depicted in Fig. 1; the elements are numbered in 
circles and the coordinates of the nodes are also given. 
Two of the nodes, 1 and 2, are fixed; the other three are 
free-moving. A downward loading force of 50 kN is 
separately applied to both nodes 4 and 5. 

Upon loading, we wish to compute the 
displacements of nodes 3-5, viz. 554433 ,,,,, vuvuvu , 
and the resultant normal forces in all six elements, 
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61 ,, SS K . Each of these is an interval quantity since the 
uncertainty in the input data causes uncertainty in the 
solution. We wish to compute intervals which tightly 
contain the true ranges of values for each of these 
variables. 

The uncertain parameters are as follows (see also 
Table 1): 

• The positions of the five nodes of the truss (before 
loading) are subject to an uncertainty of 0.005±  in 
both the x - and y -directions. With metres as the 

coordinate units, this corresponds to a variation of 
5± mm. Correspondingly, the elements are of 

uncertain length (depending upon configuration, they 

may vary upto 210± mm). 
• The product of the elements’ cross-sectional area 

with the Young’s modulus is subject to an uncertainty 
of 5± %. The nominal value is taken as an IPE 160 

steel  element ( 20.1=A cm2, 810*2.1=E kN/m2). 
 

 
Fig. 1  Mechanical Truss Model with Six Elements. 
 

Table 1  Interval Parameters for the Truss Model. 

Parameter  Nominal Value  Uncertainty  
Young’s modulus * area 
EA  422100  kN  

21105±  kN 
( 5± %)  

Node 
coordinates 

),( 11 yx   
),( 22 yx   
),( 33 yx   
),( 44 yx   
),( 55 yx   

(0,2)   0.005±  m  
(0,0)   0.005±  m  
(2,1)   0.005±  m  
(2,0)   0.005±  m  

(4,0)   0.005±  m  

Loading 
forces 

33
, yx FF   0 kN, 0 kN  1±  kN  

44
, yx FF   0 kN, 50− kN  1±  kN  

55
, yx FF   0 kN, 50− kN  1±  kN  

This results in 3205][400995,44:=EA . Note that 
there is a single, global EA  parameter. 

• The loading forces applied to all nodes are subject 
to an uncertainty of 1± kN in both the x -and 
y -directions. This applies even to nodes which do not 

have a loading force applied (i.e., node 3). 

4. Methodology 

Our solution procedure consists of the following 
stages: 

(1) Application of a variable substitution to 
generate the symbolic system stiffness matrix 
appearing in the FEM in terms of the interval 
parameters; 

(2) initial enclosures for the node displacements 
obtained by applying a parametric solver to the 
interval system; 

(3) initial enclosures for the element forces 
computed from these node displacements; 

(4) an interval tightening method applied to the 
element forces; 

(5) an interval tightening method applied to the node 
displacements. 

4.1 Finite Element Method 

The usual FEM [2, 19] proceeds by the assemblage 
of a single large system of linear equations. For each 
structural element in the problem (see Fig. 2), an  
element stiffness matrix is created, expressed in terms 
of θcos , θsin , EA , and L , the element length. 
 

 
Fig. 2  Arrangement of a single element connecting 
left-hand and right-hand nodes. 
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Since the node locations are uncertain, the angles of 
the various elements are also interval quantities. 
However, the angles and the element lengths are only 
implicit interval parameters. Therefore, by means of 
the following substitutions, we can rearrange each 
element matrix so that it is expressed only in terms of 
the explicit interval parameters, viz. EA  and the node 
coordinates, ),( ll yx  and ),( rr yx : 

L
xx lr −=cosθ            (7) 

L
yy lr −=sinθ            (8) 

22 )()(= lrlr yyxxL −+−        (9) 
This yields the following element stiffness matrix: 

×

−+− 2
3

22 ))()((
=

lrlr yyxx

EAk  

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

22

22

22

22

)())(()())((
))(()())(()(

)())(()())((
))(()())(()(

lrlrlrlrlrlr

lrlrlrlrlrlr

lrlrlrlrlrlr

lrlrlrlrlrlr

yyyyxxyyyyxx
yyxxxxyyxxxx

yyyyxxyyyyxx
yyxxxxyyxxxx

(10) 

The global system stiffness matrix K  is 
assembled in the usual way. If we were to solve the 
resultant system of equations in the conventional 
fashion, i.e. by substituting each of the variables by its 
literal value (in this case, intervals instead of 
floating-point numbers), we would need to apply a 
linear system solver (e.g., interval Gaussian 
elimination [1, 12]), using interval arithmetic where 
required. However, we will see that in the interval 
case such an approach is hopeless. Instead, we must 
store the system matrix in symbolic form. 

It is worth mentioning that alternative element 
stiffness matrices can be obtained by the use of the 
following alternative transformation: 

,
1

2=sin,
1
1=cos 22

2

t
t

t
t

++
− θθ        (11) 

where 
2

= θtant . In this case the element stiffness 

matrix is as follows:  

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−−−

−−−−
−−−−−−

⋅
+

=

2222

222222

2222

222222

22

4)1(24)1(2
)1(2)1()1(2)1(

4)1(24)1(2
)1(2)1()1(2)1(

)1(
tttttt

tttttt
tttttt

tttttt

tL
EAk (12) 

We shall use the former transformation; the relative 

merits of each are briefly discussed in Section 5.2. 

4.2 Parametric System Solution 

We now have a system of linear equations for the 
node displacements ii vu , , i = 3, 4, 5: 

,= FuK ⋅                 (13) 
where K  is the global system stiffness matrix 
assembled from the element stiffness matrices ik , 

,61,= Ki , 3(= uu  3v  4u  4v  5u  Tv )5  is the 
vector of node displacements and 3

(= xFF  
3yF  

4xF  

4yF  5xF  T
yF )
5

 is the vector of loading forces. 

We will now consider the general case of a system 
of linear equations with interval parameters. Suppose 
we have a linear system 

),(=)( pbxpA ⋅             (14) 
where the coefficients of the mm ×  matrix 

)( pA  and the vector )( pb  are functions of n  
parameters varying within given intervals 

,,1,=,),,,(=)(),,,(=)( 11 mjippbpbppapa niinijij KKK (15) 

.])[,],([=][ 1
T

npppp K∈       (16) 

The set of solutions to the above system, called 
the parametric solution set, is  

( ) ∈ΣΣ xppbpA {:=][),(),(= Rm|  

]}.[somefor )()( pppbxpA ∈=⋅   (17) 
The set Σ  is compact if )( pA  is nonsingular for 

every ][ pp ∈ . For a nonempty bounded set mS R⊂ , 

define its interval hull by � ]}[|]{[: sSsS m ⊆∈∩= IR . 

It is generally expensive to obtain Σ  or � Σ , so 
instead we seek an interval vector Ω  for which it is 
guaranteed that Σ⊇Σ⊇Ω . 

We apply a general-purpose self-verified method 
for bounding the solution set of a parametric linear 
system, which does not assume any particular 
structure among the parameter dependencies. This 
method derives from inclusion theory for 
nonparametric problems, see Ref. [16] and the 
references therein. In Ref. [16], a straightforward 
generalisation to linear systems with linear parameter 
dependencies is given. The corresponding theorems 
can be modified and applied to linear systems 
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involving nonlinear parameter dependencies [14, 15]. 
The following is a general formulation of the 
enclosure method for linear systems involving 
arbitrary parametric dependencies. 

Theorem 1 Consider a parametric linear system 
defined by Eqs. (14) –(16). Let mmR ×∈ R , my IR∈][ , 

mx R∈~  be given and define mz IR∈][ , mmC ×∈ IR][  

by  
=:][z � ( ) ]},[|~)()({ ppxpApbR ∈⋅−⋅  (18) 

=:][C � ]},[|)({ pppARI ∈⋅−     (19) 

where I  denotes the identity matrix. Define mv IR∈][  

by means of the following Gauss-Seidel iteration 
.1,}])[,],[],[,],([][]{[:=][ 11 miyyvvCzv i

T
miii ≤≤⋅+ − KK (20) 

If ][][ yv ⊆ with miyv ii ≤≤≠ 1],[][ , then R  

and every matrix )( pA  with ][ pp ∈  are regular, 

and for every ][ pp ∈  the unique solution 

)()(=ˆ 1 pbpAx ⋅−  of the system defined by Eqs. (14) 

-(16) satisfies ][~ˆ vxx +∈ .  

In our computations we have chosen 1−≈ AR
(

 and 
)(=~ pbRx (⋅ , where p(  is the midpoint of ][ p  and 

)(= pAA (( . 

The above theorem generalises [16, Theorem 4.8] 
by requiring a sharp enclosure of )(:=)( pARIpC ⋅−  

for ][ pp ∈ , instead of using the interval extension 

])([ pC . Examples demonstrating the application of the 

generalised inclusion theorem can be found in [14, 15]. 
A detailed description of this algorithm can be found 
in [14]. 

4.3 Initial Node Displacement Intervals 

After applying the above parametric solver, we 
have preliminary interval enclosures for the node 
displacements. By means of the following formula 
from the FEM [19], evaluated using interval 
arithmetic, 

,)sincossincos(= ii u
L

EAS ⋅−− θθθθ  (21) 

where iS  is the resulting normal force (either tension 

or compression) in element i  and li uu (=  lv  ru  

T
rv )  is the vector of displacements for the i th 

element’s left- and right-hand nodes, preliminary 
interval enclosures for the element forces can also be 
obtained. 

4.4 Interval Tightening (Element Forces) 

At each free-moving node (nodes 3, 4, and 5 in our 
example), all forces (element forces and loading 
forces) must be in equilibrium, in both the x - and 
y -directions. For example, at node 3, the following 

must hold: 

5544311 coscos=cos θθθ SSFS x ++     (22) 

5544311 sinsin=sin θθθ SSFS y ++      (23) 

These can be rearranged to give one or more 
explicit formulae for each element force. Again at 
node 3, we have: 

1

35544
1 cos

coscos
=

θ

θθ xFSS
S

−+
      (24) 

1

35544
1 sin

sinsin
=

θ

θθ yFSS
S

−+
      (25) 

4

35511
4 cos

coscos
=

θ

θθ xFSS
S

+−
     (26) 

4

35511
4 sin

sinsin
=

θ

θθ yFSS
S

+−
      (27) 

5

34411
5 cos

coscos
=

θ

θθ xFSS
S

+−
     (28) 

5

34411
5 sin

sinsin
=

θ

θθ yFSS
S

+−
     (29) 

We apply the following interval tightening (also 
sometimes known as pruning) technique: 

• Using the current values for the element forces, 
evaluate each of the above formulae in turn, to 
obtain new interval enclosures for the forces. 

• For each element force, the current interval 
value is intersected with the new computed 
enclosure(s), yielding a narrower or identical 
interval. 

This procedure is iterated (for all nodes) as 
desired until the set of resulting set of intervals for 
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the element forces do not contract any further. 

4.5 Interval Tightening (Node Displacements) 

Using Eq. (21) instead of the force equilibrium 
equations, the above procedure could simply be 
applied in a similar fashion in order to contract the 
intervals for the node displacements. While this does 
indeed achieve a significant contraction of the 
displacement intervals, their widths are still wider 
than one would like. This reduced effectiveness is due 
to the greater number of interval quantities appearing 
in Eq. (21). 

We therefore employ a slightly more sophisticated 
pruning technique. Firstly note that iL , the length of 

element i , is related to its normal force iS  by 

,
)(

=
0

0

i

ii
i L

LLEA
S

−
            (30) 

where 
0i

L  is the starting length of element i  (i.e., 

before any loading forces are applied). 
For this procedure, we take the new, tight 

enclosures for the element normal forces obtained 
above, and from Eq. (30) we use interval arithmetic to 
calculate an interval value for iL , ,61,= Ki . These 

iL  interval values will stay fixed. 

Now consider element i . Assume for the time 
being that the displacement of its left-hand node is a 
known point value, as is the angle iθ . Given that we 

know the length, iL , to within certain bounds, what is 

the set of possible displacements of the right-hand 
node ),( rr vu  which will satisfy this length 

requirement? As illustrated in Fig. 3, this set is 
bounded by two parallel lines which are perpendicular 
to the element. 

Now consider element j , where ji ≠ , where 

elements i  and j  share the same right-hand node. 

Making the same assumptions about element j , and 

provided that the two elements are not parallel, the set 
of possible displacements which will satisfy both 
length requirements is bounded by the intersection of  

 
Fig. 3  Bounds on the displacements of a node due to two 
elements of interval length. 

 

two such pairs of parallel lines, which describes a 
parallelogram (see Fig. 3). By taking the smallest 
bounding box surrounding this parallelogram, we 
obtain new bounds for ),( rr vu . 

However, the displacements of the left-hand nodes 
and the angles of the elements are not point values, 
which complicates the issue. We thus pursue a 
combinatorial solution: Let each of these interval 
values take either their left -or  right -endpoint. There 
are 64=26  possible permutations among 

},,,,,{ jljljilili
vuvu θθ . For each such permutation, we 

can compute the parallelogram intersection and its 
bounding box. We compute the smallest bounding box 
containing all these parallelograms as a new interval 
enclosure for ),( rr vu . 

Taking each node in turn, the method thus proceeds 
as follows: 

• Take every possible pair of non-parallel elements 
which meet at the node, in turn. For example, at node 
3 we may consider elements 1 and 4, which meet there, 
followed by elements 4 and 5 (but not elements 1 and 
5, which are parallel, i.e., the intersection of their 
interval angles 1θ  and 5θ  is non-empty). 
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• For each such pair, compute an interval enclosure 
for the displacement of their common node, in the x - 
and y -directions, as above. 

• Take the intersections of these new interval(s) 
with the current values for the displacement of the 
node. 

Again, this procedure is iterated (for all nodes) as 
desired until the set of resulting set of displacement 
intervals do not contract any further. 

5. Results 

In this section the aforementioned methods are 
applied to the model described in Section 3. We aim 
to compute intervals for the element forces and node 
displacements that are guaranteed to contain the true 
solution, which consists of the set of interval ranges 
for these quantities when each interval parameter is 
allowed to vary independently within its domain. Our 
solution intervals should enclose the true solution as 
tightly as possible, minimising the overestimation 
associated with the well-known dependency problem 
in interval arithmetic, e.g., Ref. [12]. 

To obtain the initial values for the displacements 
ii vu , , i = 3, 4, 5, an existing implementation of the 

parametric system solver for the Mathematica 
environment has been used [14]. The other steps have 
been implemented in C++; apart from the Monte Carlo 
method, which is run by way of comparison to 
estimate the true interval solution to the problem, these 

are interval methods with interval variables and 
parameters, using interval arithmetic in place of 
floating-point arithmetic. The computational results are 
thus guaranteed, even accounting for rounding errors. 
The C++ interval library filib++ [7] is employed. 

5.1 Monte Carlo Simulation 

We wish to firstly compute a tight inner estimation 
to the true interval solution to the problem, for which 
the well-known Monte Carlo method is used. This is 
only done so as to obtain a close approximation to the 
true result, so as to be able to judge the quality of the 
guaranteed solution obtained by the other methods. 

All starting interval parameters are replaced by 
point values which are randomly chosen within their 
domains, and the point problem is solved, using the 
standard FEM. The result intervals are computed as 
the interval hulls (see Section 4.2) of the solutions to 

the point problems. Sufficient (here, 610 ) point 
problems are run in order to provide a relatively tight 
inner estimation to the true interval solution. 

The inner estimations for the element forces and 
node displacements obtained by the Monte Carlo 
simulation are given in Table 2. 

5.2 Finite Element Method 

With the variable substitution (7)-(9), the FEM 
yields a system of interval equations. However, the 
literal intervals appearing in the system stiffness 
matrix K  are of sufficiently large width that it is not 

 

Table 2  Comparison of results. 

 Inner Estimation (Monte Carlo) Outer Estimation (Param. Sol. & Tightening) 
S1 [106.96910595,116.62162466] [105.25687341,118.53136075] 
S2 [65.13454690,76.28536251] [56.71628310,84.77544565] 
S3 [-156.77638723,-143.72365775] [-166.94508270,-133.32673491] 
S4 [-7.73456140,2.55284234] [-12.61489164,7.32583063] 
S5 [108.31623710,115.37942086] [107.09474113,116.62507624] 
S6 [-104.25310839,-95.91022292] [-105.62441053,-94.49878139] 
u3 [-0.00008324,0.00002555] [-0.00030707,0.00023276] 
v3 [-0.00153302,-0.00124259] [-0.00177271,-0.00103279] 
u4 [-0.00078219,-0.00064526] [-0.00086044,-0.00057813] 
v4 [-0.00153224,-0.00124465] [-0.00174694,-0.00105952] 
u5 [-0.00130097,-0.00107663] [-0.00141061,-0.00098265] 
v5 [-0.00547419,-0.00459541] [-0.00585002,-0.00429726] 
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possible to solve the system using interval Gaussian 
elimination with partial pivoting, e.g., Ref. [8] and 
[12,]. A naive application of the FEM in the interval 
case will almost always fail or deliver result intervals 
that are hopelessly wide. 

We note that by using the alternative variable 
substitution (11) the interval entries of K  actually 
become  slightly  narrower. However this does not 
suffice for the system to become solvable. Also, this 
transformation is less suitable for the parametric 
solution, due to the presence of implicit interval 
parameters for the element lengths (which depend on 
the explicit parameters for the node coordinates). This 
causes the result intervals for the diplacements to be 
wider, since this dependency is not taken into account. 

5.3 Parametric Solution 

The parametric solver from Section 4.2 delivers 
intervals for the node displacements which are given 
as the starting values in Table 3. Applying Eq. (21), 
these values are used to generate intervals for the 
element forces, which are given as the starting values 
in Table 4. By themselves, these result intervals for the 
displacements are rather wide and thus not completely 
satisfactory. The resulting intervals for the element 
forces are much too wide and are unsatisfactory. 

The computation time was 14.2 seconds on a PC 
with an AMD Athlon-64 3GHz processor running the 
Mathematica environment. It should be noted that 
such a parametric solution rapidly becomes very 
time-consuming for larger systems. 

5.4 Interval Tightening (Element Forces) 

The results of applying the interval tightening 
procedure (Section 4.4) to the element forces obtained 
above are given in Table 4. The intervals converge 
rapidly in the first couple of iterations; 10 iterations 
suffice to achieve convergence to 8 decimal places, 
for which the computation time is negligible. 

The final intervals for the element forces are given 
in Table 2. Compared to the inner estimates obtained  

Table 3  Results of interval tightening on the displacements. 

Node Displacement Value 
Starting Values 

3u 38],0.00057990.00063546[−
3v 9]0.00076857,0.00198524[ −−
4u 3]0.00029821,0.00111308[ −−  
4v 5]0.00068362,0.00206827[ −−  
5u 9]0.00065465,0.00170792[ −−  
5v ]0.00226932,0.00768191[ −−  

Iteration 1 
3u 3],0.00041740.00047061[−  
3v ]0.00076858,0.00198524[ −−  
4u ]0.00057813,0.00086044[ −−  
4v ]0.00105952,0.00174694[ −−  
5u ]0.00070149,0.00166646[ −−  
5v ]0.00331722,0.00681014[ −−  

Iteration 2 
3u 6],0.00023270.00030706[−  
3v ]0.00103279,0.00177271[ −−  
4u ]0.00057813,0.00086044[ −−  
4v ]0.00105952,0.00174694[ −−  
5u ]0.00098210,0.00141118[ −−  
5v ]0.00418864,0.00596188[ −−  

Iteration 5 
3u 6],0.00023270.00030707[−  
3v ]0.00103279,0.00177271[ −−  
4u ]0.00057813,0.00086044[ −−  
4v ]0.00105952,0.00174694[ −−  
5u ]0.00098265,0.00141061[ −−  
5v ]0.00429726,0.00585002[ −−  

 

from the Monte Carlo method, we see that the 
intervals for 1S , 5S , and 6S  are tight. Those for 

2S , 3S , and 4S  are not quite so tight, but still 
acceptable. 

5.5 Interval Tightening (Node Displacements) 

The results of applying the interval tightening 
procedure (Section 4.5) to the node displacements 
obtained by the parametric solution are given in Table 3. 
Here, 5 iterations suffice to achieve convergence to 8 
decimal places. Again, the computation time is 
negligible. 

By comparing with the inner estimates from the 
Monte Carlo method (see Table 2), we see that the 
interval enclosures for the node displacements are all 
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Table 4  Results of interval tightening on the element forces. 

Element Force Value 
Starting Values 

1S  3927]8,282.901745.9563828[−  
2S  3281]1,198.425248.8230446[−  
3S  7]57.418591228,250.215544[ −−  

4S  15288]62,589.772590.631552[−  

5S  37800]25,622.815388.477355[−  

6S  60160]56,113.011324.877288[−  
Iteration 1 

1S  3927]8,282.901745.9563828[−  

2S  3281]1,198.425248.8230446[−  

3S  7]57.418591228,250.215544[ −−  

4S  408]7,88.5896894.9023225[−  

5S  859164]897,119.11[104.66035  

6S  5220]18,90.5565291.880188[−  
Iteration 2 

1S  185725]412,122.03[101.85101  

2S  3281]1,198.425248.8230446[−  

3S  7]57.418591228,250.215544[ −−  
4S  518]8,82.7965075.7139455[−  
5S  332277]841,118.74[105.02672  
6S  5]92.327988209,107.861344[ −−  

Iteration 5 

1S  853389]138,118.56[105.22056  

2S  7064]79,87.1272[54.293485  

3S  38]130.39412360,169.902129[ −−  

4S  42]7,7.35954212.6397368[−  

5S  533577]776,116.62[107.09448  

6S  0]94.479967016,105.643798[ −−  
Iteration 10 

1S  136075]341,118.53[105.25687  

2S  4565]10,84.7754[56.716283  

3S  91]133.32673470,166.945082[ −−  

4S  63]4,7.32583012.6148916[−  

5S  507624]113,116.62[107.09474  

6S  9]94.498781353,105.624410[ −−  
 

of a similar quality, about twice the width of the true 
solution. This is a noticable improvement on the 
values obtained from the parametric solver alone. 

6. Conclusions 

We have considered a statically determinate truss 
model for which the node locations, as well as all other 
parameters, are uncertain. We have performed a 
suitable variable substitution in order to apply a 

parametric solver and have devised interval tightening 
procedures for both the element forces and node 
displacements, which deliver a significant 
improvement to the results. Through the use of interval 
arithmetic, the result intervals are guaranteed to contain 
the true solution. The remaining overestimation is due 
to some lingering occurences of the dependency 
problem, at least in the current formulation. 

Initial investigations have shown that it may be 
possible to improve the results obtained by the 
parametric solver, by augmenting the system of 
equations and the system stiffness matix with 
additional equations and variables for the element 
forces (21), adding extra dependencies to the system. 
However, the resultant impact on the tightening 
procedure is minimal. 

In future, we wish to explore how effectively the 
method may be applied to truss structures with a 
greater number of elements and nodes. As a first 
attempt, we consider in Ref. [18] the statically 
indeterminate truss structure which is obtained from 
the model described in Section 3 by the addition of a 
seventh element connecting nodes 2 and 3. It is 
necessary to exploit monotonicity arguments to keep 
the overestimation small. 
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