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1. Introduction

Bounding the range of a function over a given region is an important task which is inherent in a remarkable variety
f problems in mathematics and many of its applications. These include quantitative estimation of the remainder
erms in numerical integration and differentiation, sensitivity analysis of systems, the certification of properties of
unctions like monotonicity, convexity, and univalence, and branch and bound methods in global optimization, to
ame only a few. In this paper, we consider complex polynomials which arise in many areas such as control systems
1, Sections 3.1.7 and 3.1.8], image [2] and signal [3] processing, coding theory [4], and electrical networks [5]. The regions
ver which the range of such polynomials are sought are axis-aligned compact regions in the complex plane. The tool
e are using is the expansion of the given polynomial into Bernstein polynomials. The convex hull of the coefficients
f this expansion, the so-called Bernstein coefficients, provides an enclosure for the range of the given polynomial over
he rectangular region. In contrast to the case of real polynomials, the use of the Bernstein polynomials for finding an
nclosure for the range of a complex polynomial over a region in the complex plane has been considered in only a few
apers so far. The first paper in this regard was [6] in which the range of a complex polynomial over the interval [0, 1]

is enclosed. Rokne [7] and Grassmann and Rokne [8] extended this result to range enclosures over rectangles and discs
in the complex plane. Furthermore, they considered enclosures for the range of complex polynomials with coefficients
which are not exactly known but can be located within rectangles or discs. Alternative methods to the Bernstein
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expansion include the so-called circular complex forms [9,10], and [11, Chapter 2] which use circular arithmetic [12],
[11, Section 1.3]. For the related problem of enclosing the range of a real polynomial over a simplex see [13] and references
therein.

The organization of our paper is as follows. In the next section, we introduce the notation which is used throughout
he paper. In Section 3, we first briefly recall the expansion of a multivariate real polynomial into Bernstein polynomials
ver a box and some of its fundamental properties. In the second part, we recall from [14,15] a matrix method for the
omputation of the Bernstein coefficients. In Section 4, we present the expansion for a complex polynomial which is
pplied in Section 5 for finding an upper bound for the modulus of a polynomial. It turns out that the computation of the
ange of a complex polynomial over a rectangular region can be reduced to the calculation of the range over its boundary.
n Section 6, some methods for the computation of the Bernstein coefficients of a complex polynomial are discussed which
re extended in Section 8 to multivariate complex polynomials and in Section 9 to rational functions. In Section 7, we
how how the Bernstein coefficients of a degree elevated expansion can be calculated from those of the real part of the
ower degree expansion.

. Notation

In this section, we introduce the notation that we are using throughout this paper. Let n ∈ N (set of the nonnegative
integers) be the number of variables. A multi-index (i1, . . . , in) ∈ Nn is abbreviated by i. In particular, we write
0 for (0, . . . , 0) and es for the multi-index that has a 1 in position s and 0’s otherwise. Comparison between and
arithmetic operations with multi-indices are defined entry-wise. For the multi-index i = (i1, . . . , is, . . . , in) we define
is,q := (i1, . . . , is + q, . . . , in) and i[s,q] := (i1, . . . , q, . . . , in), s ∈ {1, . . . , n} , q ∈ Z. For x = (x1, . . . , xn) ∈ Rn, its
monomials are defined as xi :=

∏n
s=1 x

is
s . For d = (d1, . . . , dn) ∈ Nn such that i ≤ d, we use the compact notations∑d

i=0 :=
∑d1

i1=0 . . .
∑dn

in=0 and
(d
i

)
:=

∏n
s=1

(ds
is

)
.

Let IR be the set of compact, nonempty real intervals x = [x, x], x ≤ x. For x ∈ IR, we define the width of x by
id x := x − x. Let x, y ∈ IR. The Hausdorff distance between x and y is defined as

dist(x, y) := max
{
|x − y|, |x − y|

}
. (1)

A box (also termed interval vector) is a vector and an interval matrix is a matrix with components from IR. Interval
uantities (with the exception of intervals denoted by brackets) are written in bold. The width of a box is the maximum
f the width of its components intervals.
The real and the imaginary parts of a complex number z = x + yi ∈ C, i2 = −1, are denoted by Re(z) and Im(z). Let

z1 = x1 + y1i and z2 = x2 + y2i ∈ C. The line segment between z1 and z2 is the set

⟨z1, z2⟩ := {z ∈ C | z = (1 − t)z1 + tz2, 0 ≤ t ≤ 1} .

If z1 ≤ z2, i.e., x1 ≤ x2 and y1 ≤ y2, then we call

z = [z1, z2] := {x + yi | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2} (2)

a (rectangular) complex interval. The set of all complex intervals is denoted by IC. If z ∈ IC, then it may also be written as
z = x + yi with x, y ∈ IR. Geometrically, z is a compact axis-aligned region in the complex plane. Any complex number
z = x+yi can be expressed as an interval [x+yi, x+yi]. Moreover, any real interval [x, x] can be considered as a complex
interval z = [x + 0i, x + 0i]. The Cartesian product of complex intervals is called a complex box.

For the ease of presentation, we index all array entries starting from zero.

3. Real Bernstein expansion

3.1. Bernstein form over the unit box

In this section, we present fundamental properties of the Bernstein expansion over a box, e.g., [16, Subsection 5.1],
[6,17–19], that are employed throughout the paper. For simplicity we consider the unit box u := [0, 1]n, since any compact
nonempty box x of Rn can be mapped affinely onto u. Let l ∈ Nn, aj ∈ R, j = 0, . . . , l, such that for s = 1, . . . , n

ls := max
{
q | aj1,...,js−1,q,js+1,...,jn ̸= 0

}
. (3)

Let p be an lth degree n-variate polynomial with the power representation

p(x) =

l∑
j=0

ajxj. (4)

We expand p into Bernstein polynomials of degree d, d ≥ l, over u as

p(x) =

d∑
b(d)j B(d)

j (x), (5)

j=0

2
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where B(d)
j is the jth Bernstein polynomial of degree d, defined as

B(d)
j (x) :=

(
d
j

)
xj(1 − x)d−j, (6)

and b(d)j is the jth Bernstein coefficient of p of degree d over u which is given by

b(d)j =

j∑
i=0

(j
i

)(d
i

)ai, 0 ≤ j ≤ d, (7)

ith the convention that ai := 0 if i ≥ l, i ̸= l, see, e.g., [6,7]. We call (5) the Bernstein representation of p.
We arrange the Bernstein coefficients in a multidimensional array B(u) = (b(d)j )0≤j≤d, the so-called Bernstein patch. The

ernstein coefficients provide lower and upper bounds for the range of p over u,
d

min
j=0

b(d)j ≤ p(x) ≤
d

max
j=0

b(d)j , for all x ∈ u. (8)

This property is called the range enclosure property. The interval spanned by the minimum and maximum Bernstein
coefficients is called the Bernstein form of p over u and denoted by B(d)(p, u). Equality holds in the left or the right
inequalities of (8) if and only if the minimum or the maximum, respectively, is attained at a vertex of B(u), i.e., if js ∈ {0, ds},
s = 1, . . . , n. This condition is known as the vertex condition. Note that the Bernstein coefficients lying on the vertices of
B(u) are values of p at the respective vertices of u. More generally, the Bernstein coefficients on the r-dimensional faces
of u, r = 0, 1, . . . , n − 1, are just the Bernstein coefficients lying on the respective faces of B(u) [19, Lemma 2]. From the
representation (7) the linearity of the Bernstein coefficients follows immediately: Let p1 and p2 be polynomials with the
power representations (4) of maximum degree l. If p = αp1 + βp2, α, β ∈ R, then

b(d)j (p) = αb(d)j (p1) + βb(d)j (p2), for all 0 ≤ j ≤ d, (9)

where b(d)j (p1) and b(d)j (p2) are the jth coefficients of the Bernstein expansions of degree d of p1 and p2, respectively, d ≥ l.
The Bernstein form of p over u is inclusion isotonic, i.e., if u is shrunk to a smaller box then the Bernstein enclosure shrinks,
too, see [20, Theorem 3] for the univariate case and [21, Corollary 1] for the multivariate case.

We can improve the Bernstein form of p over u (8) by elevating the degree d of the Bernstein expansion or subdividing
u. Subdivision is more efficient than degree elevation since iteratively applied subdivision generates a sequence of
enclosures which converges quadratically in the Hausdorff metric to the range of p over u, see, e.g., [22, Theorem 3.18],
in contrast to linear convergence when degree elevation is applied, see Theorem 1.

Theorem 1 ([6, Corollary], [18, Theorem 3]). Let p be a multivariate polynomial of degree l. Then, for d ≥ l with ds ≥ 2, s =

1, . . . , n, and κ := max1≤s≤n ds we have

dist(B(d)(p,u), p(u)) ≤ η
κ − 1
κ2 , (10)

here η =
∑l

i=0
∑n

s=1 (max {0, is − 1})2 |ai|.

Quadratic convergence of the Bernstein form to the range with respect to the width of the underlying box is provided
n the next theorem.

heorem 2. Let y ⊆ u be a box. Under the hypothesis of Theorem 1, we have the following estimate

dist(B(d)(p, y), p(y)) ≤ ω
κ − 1
κ2 (wid(y))2,

where

ω =

l∑
i=0

n∑
s=1

(max {0, is − 1})2
l∑

t=i

(
t
i

)
|at |. (11)

.2. Method for the computation of the Bernstein coefficients over a box

We recall from [15] a method for the computation of the Bernstein coefficients of the n-variate polynomial p given in
4) over the unit box u. For the case of a general box see [15].

The superscript c denotes the cyclic ordering of the sequence of the indices, i.e., the order of the indices of the entries
f the array under consideration is changed cyclically. This means that the index in the first position is replaced by the
ndex in the second one, the index in the second position by the one in the third, . . ., the index in the nth position by
he one in the first position; see Figure 1 in [15] as an illustration in the trivariate case. So after n cyclic orderings the
3
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sequence of the indices is again in its initial order. Note that in the bivariate case the cyclic ordering is just the usual
matrix transposition.

The coefficients of p are arranged in an (l1 + 1) × l∗ matrix A, where l∗ :=
∏n

s=2(ls + 1). The correspondence between
the coefficients aj of p and the entry of A in row i and column j is as follows:

i = j1, (12a)

j = j2 +

n∑
s=3

js(l2 + 1) · . . . · (ls−1 + 1). (12b)

hen A can be represented as the matrix⎡⎢⎢⎣
a0,0,0,...,0 a0,1,0,...,0 . . . a0,l2,0,...,0 a0,0,1,...,0 . . . a0,l2,1,...,0 . . . a0,0,l3,...,0 . . . a0,l2,l3,...,0 . . .

a1,0,0,...,0 a1,1,0,...,0 . . . a1,l2,0,...,0 a1,0,1,...,0 . . . a1,l2,1,...,0 . . . a1,0,l3,...,0 . . . a1,l2,l3,...,0 . . .
...

... . . .
...

... . . .
... . . .

... . . .
... . . .

al1,0,0,...,0 al1,1,0,...,0 . . . al1,l2,0,...,0 al1,0,1,...,0 . . . al1,l2,1,...,0 . . . al1,0,l3,...,0 . . . al1,l2,l3,...,0 . . .

. . . a0,0,l3,...,ln a0,1,l3,...,ln . . . a0,l2,l3,...,ln

. . . a1,0,l3,...,ln a1,1,l3,...,ln . . . a1,l2,l3,...,ln

. . .
...

... . . .
...

. . . al1,0,l3,...,ln al1,1,l3,...,ln . . . al1,l2,l3,...,ln

⎤⎥⎥⎦ . (13)

The matrix Λ(u) is obtained from A by multiplying aj by
(l
j

)−1
. We put Λ0 := Λ(u) and define for s = 1, . . . , n

Λs := (PsΛs−1)c, (14)

where Ps is the lower triangular Pascal matrix,

(Ps)ij :=

{(i
j

)
, if j ≤ i,

0, otherwise.
(15)

In (14), the matrix multiplication is performed according to the factorization, e.g., [23, Lemma 1],

Ps =

ls∏
µ=1

K s
µ, (16)

where the bidiagonal matrices K s
µ, µ = 1, . . . , ls, are given by

(K s
µ)ij :=

⎧⎨⎩
1, if i = j,
1, if i = j + 1, ls − µ ≤ j ≤ ls − 1,
0, otherwise.

(17)

Define for s = 1, . . . , n, r := s mod n. Then for s = 1, . . . , n the entry in position (v1, v2) in Λs−1 becomes (v ′

1 , v
′

2 ) in Λs,
where

v ′

1 = v2 mod (lr+1 + 1),

v ′

2 =

⌊
v2

lr+1 + 1

⌋
+ v1

n∏
m=1,
m̸=s,r

(lm + 1).

he Bernstein patch B(u) arranged accordingly in an (l1 + 1) × l∗ matrix, denoted by B(u), is given by Λn. Assuming that
= ls for all s = 1, . . . , n, this method requires nκ (κ+1)n

2 additions and n(κ + 1)n multiplications for the computation
f the Bernstein coefficients over the unit box u, and needs nκ(κ + 1)n + n additions and 3n(κ + 1)n + 2n(κ − 1) + n
ultiplications for a general box. A verified version of this method which is taking into account of all rounding errors as
ell as data uncertainties was recently implemented by Dr. Florian Bünger, Hamburg University of Technology, Germany.

t is included in the version 12 of the MATLAB toolbox INTLAB [24].

. Univariate complex Bernstein expansion

In this section, we recall from [7] the Bernstein representation of univariate complex polynomials over a complex
nterval in parallel to the one introduced in Section 3.1. Let p be a univariate complex polynomial of degree κ ∈ N with
he power representation

p(z) =

κ∑
ajz j, (18)
j=0

4
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where aj ∈ C, j = 0, . . . , κ . For z1 ∈ C, p can be written as

p(z) =

κ∑
j=0

cj(z − z1)j, (19)

here cj, j = 0, . . . , κ , can be computed by

cj =

κ∑
r=j

(
r
j

)
zr−j
1 ar . (20)

or z2 ∈ C, we expand p into complex Bernstein polynomials of degree d ≥ κ over ⟨z1, z2⟩ as

p(z) =

d∑
j=0

b(d)j B(d)
j (z), (21)

where B(d)
j is the jth Bernstein polynomial of degree d over ⟨z1, z2⟩, defined as

B(d)
j (z) :=

(d
j

)
(z2 − z1)d

(z − z1)j(z2 − z)d−j, j = 0, . . . , d, (22)

nd b(d)j is the jth Bernstein coefficient of p of degree d over ⟨z1, z2⟩ given by

b(d)j =

j∑
i=0

ci(z2 − z1)i
(j
i

)(d
i

) , j = 0, . . . , d. (23)

e call (21) the Bernstein representation of p over ⟨z1, z2⟩ [7]. Without loss of generality we assume in the sequel that
= κ .
Let z1 ≤ z2, where z1 = x1 + y1i, z2 = x2 + y2i. If z = [z1, z2], it follows that (x, y) ∈ x, where x := [x1, x2] × [y1, y2].

herefore, p can be written as

p(z) = p(x, y) = R(x, y) + I(x, y)i, (24)

here R and I are two real bivariate polynomials of degrees l(R) and l(I), respectively. Let b′

j, b
′′

j , j = 0, . . . , l, denote the
th Bernstein coefficients of R and I of degree l = (κ, κ) over x, respectively. We arrange these coefficients in Bernstein
atches B(R, x) = (b′

j)0≤j≤l and B(I, x) = (b′′

j )0≤j≤l, respectively. For later reference we introduce the index set I by

I := {(0, 0), (0, κ), (κ, 0), (κ, κ)} . (25)

y expanding R and I into Bernstein polynomials of degree l over x, we obtain

p(z) = p(x, y) =

l∑
j=0

(b′

j + b′′

j i)B
(l)
j (x, y), (26)

here B(l)
j is the jth Bernstein polynomial of degree l over x.

. An upper bound for the modulus of a polynomial

Let p be a complex polynomial of degree κ as given in (18). We consider p over a complex interval z , such that p is
written in form (26) over x. Since the Bernstein polynomials (22) are nonnegative on z and sum up to 1 [7], it follows
from (26) that

|p(z)| = |

l∑
j=0

(b′

j + b′′

j i)B
(l)
j (x, y)|≤

l∑
j=0

⏐⏐b′

j + b′′

j i
⏐⏐ B(l)

j (x, y)

≤ max
j=0,...,l

|b′

j + b′′

j i|, for all z ∈ z. (27)

As in the real case, see Section 3.1, the following vertex condition holds.

Proposition 3. The upper bound in (27) is attained if and only if maxj=0,...,l |b′

j + b′′

j i| = |b′

j⋆ + b′′

j⋆ i| for some j⋆ ∈ I given in
(25).
5
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Proof. Assume that maxj=0,...,l |b′

j + b′′

j i| = |b′

j⋆ + b′′

j⋆ i| for some j⋆ ∈ I. Then there exists z⋆
= x⋆

+ y⋆i ∈ z with

(x⋆, y⋆) =

(
x1 +

j⋆1
κ
(x2 − x1), y1 +

j⋆2
κ
(y2 − y1)

)
and we get

p(z⋆) = p(x⋆, y⋆) = b′

j⋆ + b′′

j⋆ i.

It follows that

max
z∈z

|p(z)| = max
j=0,...,l

|b′

j + b′′

j i|.

Conversely, suppose that for some z⋆
∈ z we have

|p(z⋆)| = max
z∈z

|p(z)| = max
j=0,...,l

|b′

j + b′′

j i|. (28)

f all |b′

j + b′′

j i|, j = 0, . . . , l, are equal, then the statement trivially holds. Otherwise, from (27) we get

|p(z⋆)| ≤

l∑
j=0

|b′

j + b′′

j i|B
(l)
j (x⋆, y⋆) ≤ max

j=0,...,l
|b′

j + b′′

j i|.

If (x⋆, y⋆) is not a vertex of x, then B(l)
ĵ
(x⋆, y⋆) ∈ (0, 1) for at least one ĵ ∈ {0, . . . , l} such that the last inequality is strict,

which provides a contradiction to (28). ■

An upper bound for the modulus of p over z can be obtained by the Maximum Modulus Principle Theorem. By
employing this theorem it suffices to calculate the maximum modulus of the Bernstein coefficients of p over the four line
segments bordering z . By the face value property, see Section 3.1, these coefficients are identical to the ones lying on the
respective edges of the Bernstein patch B(p, x). Alternatively, the Bernstein coefficients of the four univariate polynomials
obtained when p is restricted to the edges of z can be separately computed. Another approach for finding an upper bound
or the maximum modulus of p is as follows: Let H(x, y) be the bivariate polynomial of degree at most (2κ, 2κ) defined
by

H(x, y) := |p(z)|2 = R2(x, y) + I2(x, y). (29)

Again we consider the four univariate polynomials obtained when H is restricted to the edges of z and calculate their
Bernstein coefficients, where we have again two choices as above. Then we take the maximum square root instead of the
maximum modulus. The question arises whether it requires less effort when the Bernstein coefficients of R2 and I2 are
alculated directly from the Bernstein coefficients of R and I and then by the linearity of the Bernstein coefficients, see
ection 3.1, their sum is formed or when R and I are firstly squared in their power representation, then the Bernstein

coefficients of the squared polynomials are computed, and finally their sum is formed. From the results in [22, Section 3.7],
[25, Section 4] it follows that the first method is more favorable. In all these variants, we recommend the method
presented in Section 3.2 for the computation of the respective Bernstein coefficients.

6. Enclosure of the range of univariate complex polynomials

Let ⟨z1, z2⟩ be a line segment in the complex plane, and p be a univariate polynomial of degree κ as given in (18). Let
S be the range of p over ⟨z1, z2⟩, A be the convex hull of S , and Ad be the convex hull of the Bernstein coefficients of p
of degree d over ⟨z1, z2⟩, d ≥ κ . By Ad one obtains an enclosure of A.

heorem 4 ([6, Lemma 2 and Theorem 5], [7, Theorems 1 and 4]). Let ⟨z1, z2⟩ be a line segment in the complex plane and p
be a complex univariate polynomial of degree κ , given in the Bernstein representation of degree d, d ≥ κ . Then, the following
elations are valid

A ⊆ Ad+1 ⊆ Ad, (30a)

A = ∩
∞

d=κAd. (30b)

From (30), we conclude that the enclosure of the range of p over a line segment provided by the Bernstein coefficients
f p can be improved by elevating the degree of the Bernstein expansion. Step by step degree elevation results in a
equence of enclosures which approximates the range of the polynomial better and better. However, the convergence of
he sequence to the true range is only linear, see [6] and [7]. Quadratic convergence can be expected when subdivision
s applied, see Section 3.1.

Now, we consider p over a complex interval z = [z1, z2]. Then the convex hull of the range of p over z is equal to the
onvex hull of the range of p over the four line segments bordering z . This is a consequence of the following theorem.
6
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Theorem 5 ([7, Lemma]). If the complex function f is analytic in a domain R ⊆ C, continuous on cl(R), then conv(f (cl(R))) is
qual to conv(f (∂R)).

Hence, the problem of finding an enclosure for the range of p of degree κ given in (18) over the complex interval z
s reduced to the problem of finding an enclosure for the convex hull of the range of p over the four edges of z . In the
equel we present some methods which can be used for the computation of the Bernstein coefficients over these edges.
hen comparing the required number of real arithmetic operations we count a complex addition as two real additions

nd a complex multiplication as two real additions and four real multiplications and assume that binomial coefficients
re precomputed. Numerically, in general much sharper upper bounds for the range of p over the edges can be obtained
y solving global optimization problems for the four edge polynomials by employing the branch and bound algorithm
sing the Bernstein approach, see [26,27], and [22]. Solving these problems yields upper bounds for the maximum value
nd bounds for the global maximizers of the objective functions (polynomials) of the related problems.

.1. Rokne’s method

In this subsection, we briefly present Rokne’s method [7]. Translating z from z1 to the origin and from z2 to the origin
s required. Then the resulting polynomials, considered over the complex interval z ′

:= [0, z2 − z1], are referred to as p1
nd p2, respectively. Let cj(p1) and cj(p2), j = 0, . . . , κ , are the jth coefficients of p1 and p2, respectively, such that

p1(z) =

κ∑
j=0

cj(p1)z j (31)

nd

p2(z) =

κ∑
j=0

cj(p2)z j, (32)

here for j = 0, . . . , κ , we have

cj(p1) =

κ−j∑
i=0

(
j + i
i

)
aj+iz i1, (33)

nd

cj(p2) =

κ−j∑
i=0

(
j + i
i

)
aj+i(−1)jz i2. (34)

he two line segments

I1 := ⟨0, x2 − x1⟩ , (35a)

I2 := ⟨0, (y2 − y1)i⟩ (35b)

re edges of z ′. Denote by bj(pm, Ih) the jth Bernstein coefficient of the polynomial pm over the hth line segment Ih,
= 0, . . . , κ, m, h ∈ {1, 2}, which can be computed by using (23). Then an upper bound for the range of p over z is
btained by

max
0≤j≤κ
m,h=1,2

{
Re(bj(pm, Ih))

}
+ max

0≤j≤κ
m,h=1,2

{
Im(bj(pm, Ih))

}
i. (36)

eplacing the max by min yields a lower bound. In Table 1, the number of the real arithmetic operations for the
omputation of the Bernstein coefficients of p1 and p2 by Rokne’s method is presented (note that z j1, z

j
2, and cj, j = 0, . . . , κ ,

re complex numbers). In total, Rokne’s method requires 22κ2
+ 36κ − 12 real arithmetic operations (additions and

ultiplications/divisions). A matrix method based on Rokne’s method is presented in Section 6.2.3.

.2. Proposed matrix methods

In this subsection, we present three matrix methods for the computation of an enclosure for the range of p over z .

.2.1. Method I
Denote for j = 0, . . . , κ

a′
:= Re(a ), a′′

:= Im(a ). (37)
j j j j

7
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Table 1
Number of real arithmetic operations for the computation of the Bernstein coefficients
(BC) by Rokne’s method.
Calculation of Number of additions Number of

multiplications/divisions

z j1, z
j
2 , cj(p1), and

cj(p2), j = 0, . . . , κ
2[2(κ − 1) + 2κ(κ + 1)] 2[4(κ − 1) + 3κ(κ + 1)]

Bernstein coefficients of
p1 and p2 over I1 and I2

2[2(κ(κ + 1)) + 1] 2[2(2κ(κ + 1)) + κ − 1]

Total 8κ2
+ 12κ − 2 14κ2

+ 24κ − 10

Since p can be represented as in (24), the two real bivariate polynomials R and I are given as

R(x, y) =

κ∑
j=0,
j even

κ−j∑
i=0

(−1)
j
2

(
i + j
j

)
a′

i+jx
iyj −

κ∑
j=0,
j odd

κ−j∑
i=0

(−1)
j+1
2

(
i + j
j

)
a′′

i+jx
iyj, (38)

nd

I(x, y) =

κ∑
j=0,
j even

κ−j∑
i=0

(−1)
j
2

(
i + j
j

)
a′′

i+jx
iyj +

κ∑
j=0,
j odd

κ−j∑
i=0

(−1)
j−1
2

(
i + j
j

)
a′

i+jx
iyj. (39)

et AR and AI be the (κ + 1) × (κ + 1) real matrices that contain the coefficients of R and I , respectively, such that for
ν = 0, . . . , κ, ν = 1, 2, we have

(AR)j1j2 =

⎧⎪⎨⎪⎩
(j1+j2

j2

)
(−1)

j2
2 a′

j1+j2
, 0 ≤ j1 ≤ κ − j2, j2 even,(j1+j2

j2

)
(−1)

j2+1
2 a′′

j1+j2
, 0 ≤ j1 ≤ κ − j2, j2 odd,

0, otherwise,

(40)

nd

(AI )j1j2 =

⎧⎪⎨⎪⎩
(j1+j2

j2

)
(−1)

j2
2 a′′

j1+j2
, 0 ≤ j2 ≤ κ − j1, j2 even,(j1+j2

j2

)
(−1)

j2−1
2 a′

j1+j2
, 0 ≤ j2 ≤ κ − j1, j2 odd,

0, otherwise.

(41)

e arrange the coefficients of p in the (κ + 1) × (κ + 1) complex matrix Ap. Then from (24), (38), and (39), we get that

(Ap)j1j2 = (AR)j1j2 + (AI )j1j2 i, jν = 0, . . . , κ, ν = 1, 2.

n Method I, the computation of the Bernstein coefficients of R and I over each edge of x is required. Let Et , t = 1, . . . , 4,
enote the tth edge of x, i.e.,

Et :=

{
[x1, x2] × {yt} , for t = 1, 2,

{xt−2} × [y1, y2], for t = 3, 4. (42)

Denote bj(R, Et ) and bj(I, Et ) the jth Bernstein coefficient of R and I of degree (κ, κ) over the tth edge of x, respectively.
hese coefficients can be obtained by reducing R and I to two univariate polynomials over the edges given in (42) and
sing the matrix method presented in Section 3.2 as follows: Without loss of generality, we consider the case that we
reeze R over the edges E3 and E4. Let R(xρ, y), ρ ∈ {1, 2}, be the polynomial which results when freezing R on E3, for
= 1, or on E4, for ρ = 2. For ρ = 1, 2, assume that the coefficients of R(xρ, y) are arranged in the row vector A(R, xρ)
f order κ + 1. Then

A(R, xρ) = H1(xρ) · · ·Hκ−1(xρ)Hκ (xρ)AR, (43)

here the elementary bidiagonal matrix Hµ(x) ∈ Rµ,µ+1, µ = 1, . . . , κ, ρ = 1, 2, is defined by

(Hµ(x))ij :=

⎧⎨⎩
1, i = j,
x, i = µ, j = µ + 1,
0, otherwise.

(44)

After that, the method from Section 3.2 is applied for the computation of the Bernstein coefficients of R(xρ, y) over the
respective edge. Note that for freezing R on the edges E and E , we firstly need to apply the cyclic ordering once, then
1 2

8
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6

Table 2
Number of real arithmetic operations for the computation of the Bernstein coefficients
(BC) by Method I.
Calculation of Number of additions Number of

multiplications/divisions

AR and AI by (40) and
(41)

0 2 κ(κ−1)
2

Specification of R and I
over the four line
segments

4κ(κ + 1) 4κ(κ + 1)

BC of R and I over the
four line segments by
the method from
Section 3.2

8[κ(κ + 1) + 1] 8[3(κ + 1)+ 2(κ − 1)+ 1]

Total 12κ2
+ 12κ + 8 5κ2

+ 43κ + 16

Table 3
Number of real arithmetic operations for the computation of the Bernstein coefficients
(BC) by Method II.
Calculation of Number of additions Number of

multiplications/divisions

AR and AI by (40) and
(41)

0 2 κ(κ−1)
2

BC of R and I by the
method from Section 3.2

2[2κ(κ + 1)2 + 2] 2[6(κ +1)2 +4(κ −1)+2]

Total 4κ3
+ 8κ2

+ 4κ + 4 13κ2
+ 31κ + 8

employ the same method as in (43) to obtain A(R, yρ), and then apply the cyclic ordering again. By (26), we have for
j = 0, . . . , l, that the jth Bernstein coefficient of p over the tth edge Et , t ∈ {1, . . . , 4}, is obtained as

bj(p, Et ) = bj(R, Et ) + bj(I, Et )i, j = 0, . . . , l. (45)

From the coefficients (45) we are able to get an enclosure of the range of p over z as follows[
min
0≤j≤l

t=1,...,4

{
bj(R, Et )

}
+ min

0≤j≤l
t=1,...,4

{
bj(I, Et )

}
i, max

0≤j≤l
t=1,...,4

{
bj(R, Et )

}
+ max

0≤j≤l
t=1,...,4

{
bj(I, Et )

}
i

]
. (46)

In Table 2, the number of real arithmetic operations for the computation of the Bernstein coefficients of R and I by
Method I are presented.

The total number of real arithmetic operations for Method I is 17κ2
+ 55κ + 24.

6.2.2. Method II
In contrast to Method I, here the Bernstein coefficients of R and I over the entire box x = [x1, x2]×[y1, y2] are computed

to obtain the ones over the four edges of x. Here, we use the method presented in Section 3.2 starting from AR and AI .
Recall that the Bernstein coefficients of R and I over x are arranged in the Bernstein patches B(R, x) and B(I, x). Then the
coefficients bj(R, Et ) and bj(I, Et ) over the edges Et , t = 1, . . . , 4, given in (42), are obtained by taking those lying at
the four faces of B(R, x) and B(I, x) (using the face values property of the Bernstein coefficients, see Section 3.1). Then an
enclosure of the range of p over z is obtained again by (45) and (46). In Table 3 the number of real arithmetic operations
for the computation of the Bernstein coefficients of R and I by Method II is presented.

The total number of real arithmetic operations for Method II is 4κ3
+ 21κ2

+ 35κ + 12.

.2.3. Method III
We present here a matrix method based on Rokne’s method given in Section 6.1. Let A′

p, Cp1 , and Cp2 ∈ Cκ+1 contain
the coefficients of p, p1, and p2, which are given in (33) and (34), respectively. H1 and H2 are two square upper triangular
matrices of order κ + 1 defined for jν = 0, . . . , κ, ν = 1, 2, by

(Hm)j1j2 :=

{(j2
j1

)
z j2−j1
m , if j2 ≥ j1,

0, otherwise.
(47)

D(z) is the diagonal matrix diag(1, z, . . . , zκ ). Then, we have

C = H A′ , (48a)
p1 1 p

9



J. Titi and J. Garloff Journal of Computational and Applied Mathematics 391 (2021) 113377

w
o
p
p
f

I
a
o

6

f

t
j
b
p

Table 4
Number of real arithmetic operations for the computation of the Bernstein coefficients
(BC) of p1 over I1 and I2 by Method III.
Calculation of Number of additions Number of

multiplications/divisions

D(z1)A′
p and D( 1

z1
)(. . .) 8κ − 4 16κ − 8

PT (. . .) κ(κ + 1) 0

D(x2 − x1)Cp1 and
D(y2 − y1)Cp2

0 2(κ − 1) + 2[2(κ + 1)]

BC of p1 over [0, x2 − x1]
and [0, y2 − y1]

2[2( κ(κ+1)
2 )] 2[2(κ + 1)]

Total 3κ2
+ 11κ − 4 26κ − 2

Table 5
Total number of real arithmetic operations for the computation of an
enclosure of the range of p over z by the presented methods.
Calculation of Total number of real arithmetic operations

Rokne’s method 22κ2
+ 36κ − 12

Method I 17κ2
+ 55κ + 24

Method II 4κ3
+ 21κ2

+ 35κ + 12
Method III 6κ2

+ 72κ − 10

Cp2 = D(−1)H2A′

p. (48b)

It is easy to see that for m = 1, 2

Hm = D(
1
zm

)PTD(zm). (49)

here P is the lower triangular Pascal matrix of order κ + 1, see (15). Recall that bj(pm, Ih) is the jth Bernstein coefficient
f the polynomial pm over the hth line segment Ih, j = 0, . . . , κ, m, h ∈ {1, 2}, see (35). Then, by using the method
resented in Section 3.2 starting from Cp1 and Cp2 , which are given in (48), respectively, one can compute the Bernstein
atches that contain the coefficients of p1 and p2 over I1 and I2. Finally, an enclosure of the range of p over z is obtained
rom (36).

In Table 4 the number of real arithmetic operations for the computation of the Bernstein coefficients of p1 over I1 and
2 by Method III is presented. The number of the operations for the computation of the Bernstein coefficients of p2 over I1
nd I2 is the same with the exception that the computation of D(x2 − x1) and D(y2 − y1) is not required, i.e., the number
f multiplications/divisions is 2κ − 2 less. The total number of arithmetic operations1 for Method III is 6κ2

+ 72κ − 10.

.3. Comparison of the number of arithmetic operations and examples

In Table 5 the total number of arithmetic operations for the several methods are given which allow to draw the
ollowing conclusions: Rokne’s method is superior to Method I for κ ≤ 5, Method II is superior to Method I for κ = 1, 2,
Method III is superior to Rokne’s method for κ ≥ 3, and Method III is superior to Methods I, II for all κ . Therefore, we
recommend Rokne’s method for κ = 1, 2 and Method III for κ ≥ 3.

In Table 6, we present the timings of running the several methods for the seven polynomials listed in Appendix A. In
the second column, the degree of the polynomials is displayed, which we have chosen as the degree of their Bernstein
expansion, and in columns three to six and seven to ten the time (in ms) for the computation of the Bernstein enclosure
over the complex intervals z1 := [0, 1 + i] and z2 := [−2 − 3i, 2 − i], respectively, is given. The enclosures themselves
are listed in Table 9 in Appendix A. In [7], the range is considered over z1 and in [8] over the disc of radius 1 centered at
he origin. In both references, also an approximation of the contour of the respective range is presented which allows to
udge upon the quality of the enclosure. As we have mentioned in Section 3.1 and after Theorem 4, these enclosures can
e tightened by degree elevation of the Bernstein expansion as well as by subdivision (preferred). The test polynomials
i, i = 1, 4, 5, are taken from [7], pi, i = 2, 3, from [8], and pi, i = 6, 7, from [9]. The timings presented in Table 6 clearly

document the superiority of Method III. Finally, in Table 7 we quantify this superiority by giving the reduction of the
timings for Method III compared to the ones for Rokne’s method. The results in Table 6 are obtained on a laptop with
Intel(R) Core(TM) i5-5200U CPU@ 3.30 GHz 2.20 GHz, 16.00 GB RAM. The computations are done in Visual Studio 2010.

As an intermediate consequence of the inclusion isotonicity of the Bernstein form, see Section 3.1, we obtain the
following theorem.

1 A⋆
= D(x)A, such that D(x) := diag(1, x, x2, . . . , xκ ), where x is either x − x or y − y .
2 1 2 1
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Table 6
Time (in ms) required for computing the Bernstein enclosure over z1 and z2 by the presented methods.
Test case l z1 = [0, 1 + i] z2 = [−2 − 3i, 2 − i]

Rokne’s method Method I Method II Method III Rokne’s method Method I Method II Method III

p1 3 0.417 0.683 0.730 0.378 0.423 0.786 0.808 0.410
p2 4 0.546 0.887 0.896 0.456 0.595 1.014 1.081 0.505
p3 4 0.544 0.887 0.899 0.456 0.599 0.991 1.101 0.505
p4 5 0.711 1.021 1.072 0.565 0.710 1.184 1.336 0.638
p5 5 0.705 1.020 1.079 0.534 0.715 1.157 1.345 0.609
p6 6 1.195 1.195 1.301 0.641 1.379 1.385 1.668 0.745
p7 9 1.713 1.014 2.378 0.960 1.749 1.303 3.117 1.137

Table 7
Reduction in time of Method III compared to Rokne’s method.
Test case Ṙeduction over z1 Ṙeduction over z2
p1 9.35 3.07
p2 16.48 15.13
p3 16.18 15.69
p4 20.53 10.14
p5 24.26 14.83
p6 46.36 45.98
p7 43.96 34.99

Theorem 6. The enclosures of the range of a complex polynomial given in Sections 6.1 and 6.2, see (36), (46), are inclusion
sotonic.

. Computation of the Bernstein coefficients of the degree elevated expansion using those of the real part of lower
egree

Let p be a univariate complex polynomial of degree κ with its power representation given in (18). Recall that p can be
written as

p(z) = p(x, y) = R(x, y) + I(x, y)i, (50)

here R and I are real bivariate polynomials of degrees l(R) and l(I), respectively. Without loss of generality, let us consider
he unit box u. We assume that R is expanded into Bernstein polynomials of degree l = (κ, κ) over u, and that its Bernstein
oefficients are arranged in the Bernstein patch B(R, u). In this section, we present a matrix method in which B(R, u) is
sed for the computation of the Bernstein patch B̃(I, u) which comprises the Bernstein coefficients of degree l̃ := (κ, κ+1)
f I over u. Our method is based on the Cauchy-Riemann equations

∂R
∂x

=
∂ I
∂y

,
∂R
∂y

= −
∂ I
∂x

, (51)

nd a method for the computation of the Bernstein coefficients of a multivariate polynomial from those of its partial
erivatives [22, Section 3.6], [25, Section 5].
Let b(l̆)j (R, u), j = 0, . . . , l̆, be the jth Bernstein coefficient of R of degree l̆ over u, where l̆ := (κ + 1, κ), obtained by

levating the degree of the Bernstein expansion of R from l to l̆, i.e., elevating the degree with respect to x. Arrange these
oefficients in the Bernstein patch B̆(R, u). Let B( ∂R

∂x , u) be the Bernstein patch of ∂R
∂x . From [19, formula (4)], we get that

its entries can be computed by performing successive differences between the rows of B̆(R, u) and multiplying each entry
y κ + 1.
Since B( ∂R

∂x , u) equals B( ∂ I
∂y , u), see (51), we may apply the mentioned method (starting from B( ∂R

∂x , u) and using the
partial derivative with respect to y) to obtain the Bernstein patch B̃(I, u) which contains the Bernstein coefficients of
egree l̃ of I over u. Finally, we arrive at the Bernstein patch of p of degree l̃ over u by elevation of the degree of the
ernstein expansion of R from l to l̃. In Fig. 1 we present a flowchart of the procedure, where we give besides the Bernstein
atches also their degrees. In a similar manner, we can also use the Bernstein expansion of degree l of I to obtain the
ernstein expansion of degree l̃ of p. In either case, the number of arithmetic operations is roughly the half of those which
re required by Method II given in Section 6.2.2 to compute of the Bernstein coefficients of both the real and imaginary
arts, see Table 3.

. Enclosure of the range of multivariate complex polynomials

Let z = (z1, . . . , zn) ∈ Cn be such that zs = xs + ysi, s = 1, . . . , n. We set x = (x1, . . . , xn) and y = (y1, . . . , yn) and
onsider the complex box z :=

∏n
[z , z ], z := α + β i, z := γ + δ i, s = 1, . . . , n.
s=1 1,s 2,s 1,s s s 2,s s s

11
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Fig. 1. Flowchart of the procedure presented in Section 7.

Let p be a multivariate complex polynomial of degree k′
= (k′

1, . . . , k
′
n), where k′ is defined similarly as in (3), with

he power representation

p(z) =

k′∑
j=0

ajz j, (52)

here aj ∈ C, j = 0, . . . , k′. Let z ∈ z be such that x ∈
∏n

s=1[αs, γs] and y ∈
∏n

s=1[βs, δs]. For s = 1, . . . , n, we define
s+n := ys, and rename x := (x1, . . . , x2n) ∈ R2n. Substituting zs = xs + xs+ni, s = 1, . . . , n, into (52), allows us to represent
over

x :=

n∏
s=1

[αs, γs] ×

n∏
s=1

[βs, δs] (53)

n the form

p(z) = p(x) = R(x) + I(x)i. (54)

Expanding R and I into Bernstein polynomials of degree d ≥ k = (k1, . . . , k2n) over x gives

p(z) = p(x) =

d∑
j=0

(b′

j + b′′

j i)B
(d)
j (x), (55)

here b′

j, b′′

j , j = 0, . . . , d, are the jth Bernstein coefficient of R and I of degree d over x, respectively. Theorem 4 carries
ver to the multivariate case. In the remainder of this section we present two extensions of Methods I and II given in
ections 6.2.1 and 6.2.2 for the computation of an enclosure of the range of p over z . For simplicity, we choose in the
equel d equal to the degree of p. We use the representation (55) of p. Let AR and AI be the two (d1 +1)×d⋆⋆ real matrices
hat contain the coefficients aj(R) and aj(I) of R and I , respectively, where d⋆⋆

:=
∏2n

s=2(ds + 1). Arrange the coefficients
f p in the (d1 + 1) × d⋆⋆ complex matrix Ap, then from (54), we may represent the entries of Ap for j1 = 0, . . . , d1 and
2 = 0, . . . , d⋆⋆

− 1 as

(A ) = (A ) + (A ) i.
p j1,j2 R j1,j2 I j1,j2

12
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Table 8
Number of real arithmetic operations for the computation of the Bernstein coefficients (BC) by Method
I.
Calculation of Number of additions Number of multiplications

Specification of R and I over
the 4n faces

4nκ(κ + 1)2n−1 4nκ(κ + 1)2n−1

BC of R and I over the 4n
faces by the method from
Section 3.2

8n[(2n − 1)κ(κ + 1)2n−1
+

2n − 1]
8n[3(2n − 1)(κ + 1)2n−1

+

2(2n − 1)(κ − 1) + 2n − 1]

Total 4nκ(κ + 1)2n−1(4n − 2) +

8n(2n − 1)
4n(κ + 1)2n−1(κ + 12n −

6) + 8n(2n − 1)(2κ − 1)

In both methods, the computation of R and I over the 4n faces of x of dimension 2n−1 is required. In Methods I and II,
his is accomplished in the way that is described in Section 6.2.1. Then an enclosure for the range of p over z is obtained
s in (46). In the sequel, we assume that ds = κ, s = 1, . . . , 2n, and that the coefficients of R and I are given and they are

arranged in the matrices AR and AI , respectively.
In Table 8, the number of real arithmetic operations for the computation of the Bernstein coefficients of R and I by

Method I is presented.
The total number of real arithmetic operations for Method I is 4n(4nκ +12n−6)(κ +1)2n−1

+16nκ(2n−1). Method II
equires 2[2nκ(κ+1)2n+2n] additions and 2[6n(κ+1)2n+4n(κ−1)+2n] multiplications, in total 4n(κ+3)(κ+1)2n+8nκ .
hus, Method II is superior to Method I if 1 ≤ κ ≤ 4n − 2 and Method I is superior to Method II if κ ≥ 4n − 1.
It is worth to mention that Theorem 6 remains valid in the multivariate case. Assume that p is a multivariate complex

olynomial of degree k′ as given in (52). For the rest of this section, we assume that p is a multivariate complex polynomial
f degree k′ with its power representation given in (52), which allows the representation (55), where the corresponding
eal box x is defined in (53). As in Section 5, we obtain by max0≤j≤d

⏐⏐b′

j + b′′

j i
⏐⏐ an upper bound for |p(z)|, z ∈ z , where

:=
∏n

s=1[0, 1+ i]. The following theorem demonstrates the linear convergence of this bound to maxz∈z |p(z)| when the
egree of the Bernstein expansion of R and I is elevated, see (55).

heorem 7. Assume that ds ≥ 2 for s = 1, . . . , 2n and put κ := max1≤s≤2n ds. Then

max
0≤j≤d

⏐⏐b′

j + b′′

j i
⏐⏐ − max

z∈z
|p(z)| ≤ Γ

κ − 1
κ2 , (56)

here

Γ :=

√
η2
R + η2

I , (57)

ith

ηS =

d∑
j=0

2n∑
s=1

(max {0, js − 1})2 |aj(S)|, S ∈ {R, I} . (58)

roof. Assume that max0≤j≤d |b′

j + b′′

j i| = |b′

j⋆ + b′′

j⋆ i| for some 0 ≤ j⋆ ≤ d. Then for the related grid point x⋆
=

j⋆
d ∈ u :=

[0, 1]2n we may estimate

max
0≤j≤d

⏐⏐b′

j + b′′

j i
⏐⏐ − max

z∈z
|p(z)| ≤

⏐⏐b′

j⋆ + b′′

j⋆ i
⏐⏐ − |p(x⋆)|

≤
⏐⏐b′

j⋆ + b′′

j⋆ i − p(x⋆)
⏐⏐

=
⏐⏐(b′

j⋆ − R(x⋆)
)
+

(
b′′

j⋆ − I(x⋆)
)
i
⏐⏐

=

√⏐⏐⏐b′

j⋆ − R(x⋆)
⏐⏐⏐2 +

⏐⏐⏐b′′

j⋆ − I(x⋆)
⏐⏐⏐2

≤
κ − 1
κ2

√
η2
R + η2

I .

The second inequality is obtained by using the reverse triangle inequality, the first equality is a consequence from (54), the
last inequality and ηR and ηI , that are given in (58), are provided by application of Theorem 1 to R and I , respectively. ■

Remark 8. As in [6, Theorem 4] and [18, p. 42], we obtain under the hypothesis of Theorem 7

|p(
j
d
) − (b′

j + b′′

j i)| ≤ Γ
κ − 1
κ2 , j = 0, . . . , d. (59)
13
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In the next theorem, the quadratic convergence of the bounds to the maximum modulus when z is subdivided is stated.
The proof is similar to the one of Theorem 7 and uses Theorem 2.

Theorem 9. Assume that z is subdivided into ς subboxes zm, m = 1, . . . , ς , i.e., z = ∪
ς

m=1zm, where the interiors of
the subboxes are disjoint. Let xm denote the box that corresponds to zm, m = 1, . . . , ς . Define by b′

j(xm) and by b′′

j (xm)
he jth Bernstein coefficients of R and I of degree d over xm, respectively, where j = 0, . . . , d and m = 1, . . . , ς . Let

H := max1≤m≤ς wid(xm). Then under the hypothesis of Theorem 7 we obtain the following estimate

max
0≤j≤d,

m=1,...,ς

⏐⏐b′

j(xm) + b′′

j (xm)i
⏐⏐ − max

z∈z
|p(z)| ≤ ΩH 2, (60)

where

Ω =
κ − 1
κ2

√
ω2

R + ω2
I

with

ωS =

d∑
j=0

2n∑
s=1

(max {0, js − 1})2
k′∑
t=j

(
t
j

)
|at (S)|, S ∈ {R, I} . (61)

Denote by B(d)(R, x) and B(d)(I, x) the Bernstein forms of R and I of degree d over x. An enclosure for the range of p
ver z , which is denoted by B(d)(p, z), is provided by

B(d)(p, z) = B(d)(R, x) + B(d)(I, x)i, (62)

.e., we have

p(z) ⊆ B(d)(p, z). (63)

Once the complex box z is subdivided into subboxes, we can get a tighter enclosure for the range of p over z as it
s stated in the following theorem, which is a simple consequence of the inclusion isotonicity of the Bernstein form, see
ection 3.1.

heorem 10. Assume that z is subdivided into ς subboxes zm, m = 1, . . . , ς , i.e., z = ∪
ς

m=1zm, where the interiors of the
enerated subboxes are disjoint. Let B(d)(p, zm) denote the enclosure for the range of p of degree d over zm, m = 1, . . . , ς ,
hich is given by using (62) with zm and xm. Then

p(z) ⊆ ∪
ς

m=1B
(d)(p, zm) ⊆ B(d)(p, z). (64)

By Theorems 4 and 5, the convex hull of the Bernstein coefficients of a univariate complex polynomial over an arbitrary
complex box z provides an enclosure for the range of the polynomial over this box. Now, we consider the multivariate
case. Let

A := conv (p(z)) , (65a)

Ad := conv
({

b′

j + b′′

j i | j = 0, . . . , d
})

. (65b)

Let z0 ∈ z arbitrarily be chosen. Then for the related x0 ∈ x we may represent

p(z0) =

d∑
j=0

(b′

j + b′′

j i)B
(d)
j (x0). (66)

Since B(d)
j (x0), j = 0, . . . , d, are nonnegative and form a partition of unity, it follows from (66) that p(z0) is written as a

convex combination of b′

j + b′′

j i, j = 0, . . . , d. Hence, p(z0) ∈ Ad and we may conclude that p(z) ⊆ Ad, and thus A ⊆ Ad.
By elevating the degree of the Bernstein expansion of the given polynomial over a complex box z , we obtain a sequence

of enclosures that approximates A better and better as the following theorem states. Its proof reveals that this sequence
converges linearly to A, see (72).

Theorem 11. Denote by b′

j(s) and b′′

j (s) the jth Bernstein coefficients of R and I, respectively, of degree d + es over x,
s = 1, . . . , 2n. Then for all d ≥ k and s = 1, . . . , 2n, it holds that

A ⊆ Ad+es ⊆ Ad, (67a)

A = ∩
∞

d=kAd. (67b)
14
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Proof. We begin with the proof of (67a). Assume that s ∈ {1, . . . , 2n} and suppose that ds = κ , s = 1, . . . , 2n. Then, we
obtain by [16, p. 391] that

b′

j(s) =

jsb′

js,−1
+ (κ + 1 − js)b′

j

κ + 1
, (68)

nd similarly for b′′

j (s) with the convention that b′

j[s,w]
= b′′

j[s,w]
= 0, where w ∈ {−1, d + es}. Then we get

b′

j(s) + b′′

j (s)i =

js
[
b′

js,−1
+ b′′

js,−1
i
]

+ (κ + 1 − js)
[
b′

j + b′′

j i
]

κ + 1
, (69)

hich means that b′

j(s) + b′′

j (s)i, j = 0, . . . , d + es, are expressed as convex combinations of b′

j + b′′

j i, j = 0, . . . , d. This
implies that

b′

j(s) + b′′

j (s)i ∈ Ad, (70)

and thus (67a). Now, we turn to the proof for (67b) following the one of Theorem 4 in [7]. Since A ⊆ Ad, for all d ≥ k,
we obtain the inclusion in (67b). Now assume that z0 ∈ z is such that z0 ∈ ∩

∞

d=kAd and z0 /∈ A. Then by the compactness
of A, it holds that the smallest distance between z0 and any z ∈ A, denoted by δ, is positive. Choose d ≥ k such that
κ−1
κ2 Γ < δ, where Γ is defined in (57). Since z0 ∈ Ad, there exist λj ≥ 0, j = 0, . . . , d, with

∑d
j=0 λj = 1, such that

z0 =

d∑
j=0

λj(b′

j + b′′

j i). (71)

Now using Remark 8, it follows that

|

d∑
j=0

λjp(
j
d
) − z0| ≤

d∑
j=0

λj|p(
j
d
) − (b′

j + b′′

j i)|

≤ max
0≤j≤d

|p(
j
d
) − (b′

j + b′′

j i)|

≤ Γ
κ − 1
κ2 , (72)

hich is smaller than δ, a contradiction to the assumption. ■

We are now taking into account the dependency of Ad from the underlying box z by writing Ad(z) = conv
({

b′

j(x)
b′′

j (x)i | j = 0, . . . , d
})

. The following theorem states that Ad has the inclusion isotonicity property.

heorem 12. For two complex boxes z1, z2, it holds that

if z1 ⊆ z2, then Ad(z1) ⊆ Ad(z2). (73)

roof. We obtain z1 from z2 by a finite sequence of subdivision steps. In each subdivision step we calculate the Bernstein
oefficients of R and I over the corresponding real box by the de Casteljau algorithm, see, e.g., [16, Subsection 4.2]. Since
n each step of this algorithm we are forming convex combinations, the Bernstein coefficients on a subdivided box are
onvex combinations of the Bernstein coefficients of the parent box and the proof is thus completed. ■

Let Et denote the tth face of the faces of dimension 2n − 1 of x given in (53) which are arranged in any order,
= 1, . . . , 4n. Define by b′

j(Et ) and b′′

j (Et ) the jth Bernstein coefficients of R and I , respectively, of degree d, d ≥ k,
over Et . Put

A′
:= conv (p(∂z)) , (74a)

A′

d := conv
({

b′

j(Et ) + b′′

j (Et )i | j = 0, . . . , d, t = 1, . . . , 4n
})

. (74b)

Then, the following theorem demonstrates that A′

d provides an enclosure for A, see (65a), which is not wider and often
tighter than Ad and B(d)(p, z) given in (62). For a given z0 ∈ ∂z , let E(0)

t denote the tth face of x, where z0 is lying. Define
by B(d)

j,t the jth Bernstein basis polynomial of degree d over the tth face of x, j = 0, . . . , d, t = 1, . . . , 4n.

Theorem 13. The following inclusions hold for all d ≥ k

A ⊆ A′

d ⊆ Ad. (75)
15
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Proof. The second inclusion is obvious. Since by Theorem 5 the equality A = A′ holds, it is enough to show that A′
⊆ A′

d,
where A′ is defined in (74a). Let z ′

∈ A′. Then, z ′ can be represented as

z ′
=

ρ∑
r=1

λrp(zr ), (76)

where
∑ρ

r=1 λr = 1, λr ≥ 0, and zr ∈ ∂z , for all r = 1, . . . , ρ. Then

z ′
=

ρ∑
r=1

d∑
j=0

λrB
(d)
j,t (zr )

(
b′

j(E
(r)
t ) + b′′

j (E
(r)
t )i

)
. (77)

By the partition of unity property of B(d)
j,t (zr ), j = 0, . . . , d, r ∈ {1, . . . , ρ}, and

∑ρ

r=1 λr = 1, it follows that
∑ρ

r=1
∑d

j=0 λr

B(d)
j,t (zr ) = 1. Thus, z ′ is written as a convex combination of b′

j(E
(r)
t ) + b′′

j (E
(r)
t )i, j = 0, . . . , d, r = 1, . . . , ρ, which proves

A′
⊆ A′

d. Since{
b′

j(Et ) + b′′

j (Et )i | j = 0, . . . , d, t = 1, . . . , 4n
}

⊆
{
b′

j + b′′

j i | j = 0, . . . , d
}
,

see Section 3.1, it holds that A′

d ⊆ Ad. ■

9. Enclosure of the range of rational complex functions

Let q1 and q2 be two n-variate complex polynomials. We may assume that the two polynomials have the same degree
since otherwise we can elevate the degree of the Bernstein expansion of either polynomial by component where necessary
to ensure that their Bernstein coefficients are of the same order. From (54), q1 and q2 can be written as

qr (z) = qr (x) = Rr (x) + Ir (x)i, r ∈ {1, 2} , (78)

where Rr , Ir , r = 1, 2, are real 2n-variate polynomials. We consider the rational function

f :=
q1
q2

(79)

ver z . From (78), f can be written as

f (z) = f (x) = Q1(x) + Q2(x)i, (80)

here

Qr (z) = Qr (x) =
Qr1(x)
Q22(x)

, r = 1, 2, (81)

with

Q11(x) = R1(x)R2(x) + I1(x)I2(x), (82a)

Q21(x) = I1(x)R2(x) − R1(x)I2(x), (82b)

Q22(x) = R2
2(x) + I22 (x). (82c)

Then, for j = 0, . . . , d, let bj(Q11), bj(Q21), and bj(Q22) be the jth Bernstein coefficient of Q11,Q21, and Q22 of degree d over
z , respectively, which can be computed directly from the Bernstein coefficients of the polynomials appearing on the right
hand side of (82), see [22, Section 3.7]. We use the following notations

bj(Qr ) :=
bj(Qr1)
bj(Q22)

, j = 0, . . . , d; r = 1, 2. (83)

Under the assumption that the bj(Q22) either all are positive or all negative, we obtain by [28, Theorem 3.1] that for all
x ∈ x

min
0≤j≤d

bj(Qr ) ≤ Qr (x) ≤ max
0≤j≤d

bj(Qr ), r = 1, 2, (84)

and thus an enclosure for the range of f over z is obtained by[
min
0≤j≤d

bj(Q1) + min
0≤j≤d

bj(Q2)i, max
0≤j≤d

bj(Q1) + max
0≤j≤d

bj(Q2)i
]

. (85)

Example 14. We consider the univariate rational function f (z) =
1+2z2+z3

2−z+3z2
over z = [0.6−1.4i, 1.4−0.6i] [11, Example 2].

By the application of the method presented in this section, we obtain in 0.793 ms the enclosure [0.846− 0.547i, 1.257−

0.244i] for the range of f over z. The area of this enclosure is less than 0.131, whereas in [11] the application of the
16
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Table 9
The Bernstein enclosure over z1 := [0, 1 + i] and z2 := [−2 − 3i, 2 − i], respectively.
Test case Bernstein enclosure over z1 Bernstein enclosure over z2
p1 [−3 − 2i, 2 + 2.333i] [−54.667 − 61i, 24 + 59i]

p2 [−17.7 − 8.575i, 5.6 + 10.317i] [−614.1 − 610.9i, 677.5 +

698.2i]

p3 [−4.4 − 1.383i, 2 + 3.683i] [−79.9 − 83.7i, 78.767 + 67.7i]

p4 [0.254+ 0.236i, 0.890+ 0.837i] [−158.175 −

138.742i, 132.485 + 175.593i]

p5 [0.450+ 0.450i, 0.602+ 0.602i] [−227.722 −

204.056i, 152.722 + 294.344i]

p6 [−2.068 − 2.300i, 3.533 +

2.376i]
[−389.225 −

529.526i, 570.424 + 475.814i]

p7 [−7.481 − 13.160i, 28.842 +

15.356i]
[−117250.429 −

117822.949i, 120539.093 +

110938.291i]

centered form to f over the disc centered at 1 − i of radius 0.4 inscribed in z provides a disc as enclosure of the
much larger area 3.141. An inner estimate for the range of f over z (obtained by evaluation of f at 5000 points in z)
is [1.068 − 0.517i, 1.206 − 0.244i].

Appendix A. Description of the polynomial test problems

• p1(z) = (1 + i) − (1 + i)z + (1 + i)z2 + iz3 [7, Example 4],
• p2(z) = (1 + 0.5i)z + 0.5iz2 + 0.6z3 + (4 + i)z4 [8, Example 2],
• p3(z) = 1 + i + (0.4 + i)z2 + 0.5iz3 + 0.6z4 [8, Example 3],
• p4(z) = 0.5 + 0.5i + (0.0032 − 0.0012i)z + (−0.006 + 0.012i)z2 + (0.02 + 0.047i)z3 + (−0.3 − 0.15i)z4 + 0.2z5 [7,

Example 5],
• p5(z) = 0.5 + 0.5i − 0.1476z + (0.5 − 0.5i)z2 + iz3 − (0.5 + 0.5i)z4 + 0.2z5 [7, Example 6],2
• p6(z) = 0.8439−0.3312i+(0.1146−0.9919i)z+(0.3695−0.0198i)z2+(0.2170−0.0027i)z3+(0.5042−0.9094i)z4+

(0.3355 − 0.0222i)z5 + (0.1987 − 0.0227i)z6 [9, Example 3],
• p7(z) = 0.2646−0.0352i+(0.6742−0.0056i)z+(0.1471−0.7941i)z2+(0.8776−0.2919i)z3+(0.2863−0.9307i)z4+

(0.7096− 0.0342i)z5 + (0.1840− 0.2115i)z6 + (0.8061− 0.0060i)z7 + (0.0577− 0.0711i)z8 + (0.9947− 0.6284i)z9
[9, Example 1].
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