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Abstract. A totally positive matrix is a matrix having all its minors posi-

tive. The largest amount by which the single entries of such a matrix can be

perturbed without losing the property of total positivity is given. Also some
completion problems for totally positive matrices are investigated.

1. Introduction

In this paper we consider matrices which are totally positive, i.e., all their mi-
nors are positive. For the properties of these matrices the reader is referred to the
two recent monographs [5] and [11]. In the first part of our paper we are inter-
ested in the largest amount by which the single entries of such a matrix can be
varied without losing the property of total positivity. This question is answered
for a few specified entries in [6], see also [5, Section 9.5]. Similarly, one may ask
how much the entries of a totally nonnegative matrix, i.e., a matrix having all its
minors nonnegative, can be perturbed without losing the property of total nonneg-
ativity. This problem is solved in [2] for tridiagonal totally nonnegative matrices.
A related question is whether all matrices lying between two totally nonnegative
matrice with respect to a suitable partial ordering are totally nonnegative, too. The
second author conjectured in 1982 [8] that this is true for the nonsingular totally
nonnegative matrices and the so-called checkerboard ordering, see also [5, Section
3.2] and [11, Section 3.2]. In [1] we apply the so-called Cauchon algorithm, see,
e.g., [3], to settle this conjecture.

In the second part of our paper we solve some completion problems for to-
tally positive matrices. Here we consider the case that in a matrix some entries
are specified, while the remaining ones are unspecified and are free to be chosen.
All minors contained in the specified part are supposed to be positive. Then the
question arises whether values for the unspecified entries can be chosen such that
the resulting matrix is totally positive. Solutions of such completion problems can
be found in [5, Subsections 9.1-9.4], and [10]. The starting point of our work is the
recent paper [9].
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The organization of our paper is as follows. In the next section we explain our
notation and we collect some auxiliary results in Section 3. In Section 4 we present
our main results on the perturbation of entries of totally positive matrices and we
show that the derived set of determinantal conditions is minimal. In Section 5 we
solve a completion problem for some new patterns of unspecified entries, hereby
partially settling two conjectures in [9].

2. Notation

We now introduce the notation used in our paper. For κ, n we denote by Qκ,n
the set of all strictly increasing sequences of κ integers chosen from {1, 2, . . . , n}.
For α = {α1, α2, . . . , ακ} ∈ Qκ,n the dispersion of α is d(α) = ακ − α1 − κ + 1.
If d(α) = 0 then the index set α is called contiguous. Let A be a real n ×m ma-
trix. For α = {α1, α2, . . . , ακ} ∈ Qκ,n , β = {β1, β2, . . . , βµ} ∈ Qµ,m, we denote by
A[α|β] the κ × µ submatrix of A contained in the rows indexed by α1, α2, . . . , ακ
and columns indexed by β1, β2, . . . , βµ. We suppress the braces when we enumer-
ate the indices explicitly. In the case that α or β is obtained by taking the union
of two index sets we assume that the resulting index set is ordered increasingly.
When α = β, the principal submatrix A[α|α] is abbreviated to A[α]. In the spe-
cial case where α = {1, 2, . . . , κ}, we refer to the principal submatrix A[α] as a
leading principal submatrix (and to detA[α] as a leading principal minor). By
A(α|β) we denote the (n − κ) × (m − µ) submatrix of A contained in the rows
indexed by the elements of {1, 2, . . . , n}\{α1, α2, . . . , ακ}, and columns indexed by
{1, 2, . . . ,m}\{β1, β2, . . . , βµ} (where both sequences are ordered strictly increas-
ingly) with the similar notation A(α) for the complementary principal submatrix.

A minor detA[α|β] is called row-initial if α = {1, 2, . . . , κ} and β ∈ Qκ,m
is contiguous, it is termed column-initial if α ∈ Qκ,n is contiguous while β =
{1, 2, . . . , κ}, and initial if it is row-initial or column-initial.

The n-by-n matrix whose only nonzero entry is a one in the (i, j)th position is
denoted by Eij . We reserve throughout the notation Tn = (tij) for the permutation
matrix with ti,n−i+1 = 1, i = 1, . . . , n. An n-by-m matrix A is called totally
positive (abbreviated TP henceforth) and totally nonnegative (abbreviated TN) if
detA[α|β] > 0 and detA[α|β] ≥ 0, respectively, for all α, β ∈ Qκ,n′ , κ = 1, 2, . . . , n′,
and n′ := min {n,m}. In passing we note that if an n-by-m matrix A is TP then so
are its transpose and A# := TnATm, see, e.g., [5, Theorem 1.4.1]. We will briefly
relate our results to TPk matrices, k ≤ n′. A is said to be TPk if all its minors of
order less than or equal to k are positive.

We say that a rectangular array is a partial matrix if some of its entries are
specified, while the remaining, unspecified, entries are free to be chosen. A partial
matrix is partial TP if each of its fully specified submatrices is TP . A completion
of a partial matrix is a choice of values for the unspecified entries, resulting in a
matrix that agrees with the a given partial matrix in all its specified positions. A
pattern P is TP completable if every partial TP matrix with pattern P has a TP
completion. TPk completion is defined analogously.

We recall from [9] the following definitions. We associate with a matrix the
directions north, east, south, and west. So the entry in position (1, 1) lies north
and west. We call a (possibly rectangular) pattern jagged if, whenever a position
is unspecified, either all positions north and west of it are unspecified or south and
east of it are, and we call a (possibly rectangular) pattern echelon if, whenever a
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position is unspecied, either all positions north and east of it are unspecied or south
and west of it are. Either of these is referred to as single echelon, while when both
occur, we say double echelon. Echelon refers to any of these possibilities.

3. Auxiliary Results

The following proposition shows that it suffices to consider the initial minors if
one wants to check a matrix for total positivity.

Proposition 3.1. [7, Theorem 4.1], see also [5, Theorem 3.1.4] If all initial
minors of a matrix A are positive, then A is TP .

A fundamental tool for proving in the next section inequalities between ratios
of determinants is the following proposition.

Proposition 3.2. [12, Theorem 4.2] Let α, α′, β, β′, γ, γ′, δ, δ′ be subsets of
{1, 2, . . . , n} with α ∪ γ = {1, 2, . . . , p} and α′ ∪ γ′ = {1, 2, . . . , p′}, q = |α ∩ γ|,
q′ = |α′ ∩ γ′|, and r := 1

2 (p− q+ p′− q′). Let η be the unique order preserving map

η : (α\γ) ∪ (γ\α)→ {1, 2, . . . , p− q},

and let η′ be the unique order reversing map

η′ : (α′\γ′) ∪ (γ′\α′)→ {p− q + 1, . . . , 2r}.

Define the subsets α′′ and β′′ of {1, 2, . . . , 2r} by

α′′ := η(α\γ) ∪ η′(γ′\α′),
β′′ := η(β\δ) ∪ η′(δ′\β′).

Then the following two statements are equivalent:

(1) For each square TN matrix A of order at least n the following relation
holds:

detA[α|α′] detA[γ|γ′] ≤ detA[β|β′] detA[δ|δ′].

(2) The relations α ∪ γ = β ∪ δ and α′ ∪ γ′ = β′ ∪ δ′ are fulfilled and the sets
α′′, β′′ satisfy the inequality

max{|ω ∩ β′′|, |ω\β′′|} ≤ max{|ω ∩ α′′|, |ω\α′′|}(3.1)

for each subset ω ⊆ {1, 2, . . . , 2r} of even cardinality.

Proposition 3.3. [13], see also [5, p. 62], [11, Theorem 2.6] The set of the
TP n-by-n matrices is dense in the class of TN n-by-n matrices.

The following propositions are used to solve totally positive completion prob-
lems in Section 5.

Proposition 3.4. [9, Theorem 5] Each jagged pattern is TP completable.

Proposition 3.5. [5, Theorem 9.4.4] Let A be an n-by-m partial TP matrix
with only one unspecified entry in the (s, t) position. If min {n,m} ≤ 3, then A
has a TP completion. If min {n,m} ≥ 4, then any such A has a TP completion if
and only if s+ t ≤ 4 or s+ t ≥ n+m− 2.

We remark that Proposition 3.5 is generalized in [4, Theorem 4.5] to the case
that the given matrix is partial TPk, k ≥ 4.
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4. Perturbation of Totally Positive Matrices

In this section we consider the variation of single entries of a TP matrix A =
(aij). For simplicity we consider here only the square case (n = m). We may restrict
the discussion of the off-diagonal entries to the entries which are lying above the
main diagonal since the related statements for the entries below the main diagonal
follow by consideration of the transposed matrix.

Theorem 4.1. Let A = (aij) be a TP matrix and 0 ≤ τ . Then for i ≤ j,

A± τEij is TP if and only if τ < minS,(4.1)

where in each of the following eight cases S is a set of ratios of minors, where the
minor in the denominator is obtained from the minor in the numerator by deleting
in A additionally row i and column j. If in an index sequence two indices coincide
then the respective matrix has to be removed from the listing. In the following cases
only the numerator matrices are listed 1. The cases (−) and (+) refer to the −-
and +-sign in (4.1). In the case that S is empty put minS :=∞.

(1) i = 2m, j = 2k

(−)S :

 A,A(n− 1, n|1, 2), . . . , A(n− 2k + 3, . . . , n|1, . . . , 2k − 2),
A(1, 2|n− 1, n), A(1, 2, 3, 4|n− 3, n− 2, n− 1, n), . . . ,
A(1, . . . , 2m− 2|n− 2m+ 3, . . . , n)

(+)S :

{
A(n|1), A(n− 2, n− 1, n|1, 2, 3), . . . , A(n− 2k + 2, . . . , n|1, . . . , 2k − 1),
A(1|n), A(1, 2, 3|n− 2, n− 1, n), . . . , A(1, . . . , 2m− 1|n− 2m+ 2, . . . , n)

(2) i = 2m, j = 2k + 1

(−)S :

{
A(n|1), A(n− 2, n− 1, n|1, 2, 3), . . . , A(n− 2k + 2, . . . , n|1, . . . , 2k − 1),
A(1|n), A(1, 2, 3|n− 2, n− 1, n), . . . , A(1, . . . , 2m− 1|n− 2m+ 2, . . . , n)

(+)S :

 A,A(n− 1, n|1, 2), . . . , A(n− 2k + 1, . . . , n|1, . . . , 2k),
A(1, 2|n− 1, n), A(1, 2, 3, 4|n− 3, n− 2, n− 1, n), . . . ,
A(1, . . . , 2m− 2|n− 2m+ 3, . . . , n)

(3) i = 2m+ 1, j = 2k

(−)S :

{
A(n|1), A(n− 2, n− 1, n|1, 2, 3), . . . , A(n− 2k + 2, . . . , n|1, . . . , 2k − 1),
A(1|n), A(1, 2, 3|n− 2, n− 1, n), . . . , A(1, . . . , 2m− 1|n− 2m+ 2, . . . , n)

(+)S :

 A,A(n− 1, n|1, 2), . . . , A(n− 2k + 3, . . . , n|1, . . . , 2k − 2),
A(1, 2|n− 1, n), A(1, 2, 3, 4|n− 3, n− 2, n− 1, n), . . . ,
A(1, . . . , 2m|n− 2m+ 1, . . . , n)

1E.g., A(n− 1, n|1, 2) refers in case 1(-) to the ratio
detA(n−1,n|1,2)

detA(2m,n−1,n|1,2,2k) .
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(4) i = 2m+ 1, j = 2k + 1

(−)S :

 A,A(n− 1, n|1, 2), . . . , A(n− 2k + 1, . . . , n|1, . . . , 2k),
A(1, 2|n− 1, n), A(1, 2, 3, 4|n− 3, n− 2, n− 1, n), . . . ,
A(1, . . . , 2m|n− 2m+ 1, . . . , n)

(+)S :

{
A(n|1), A(n− 2, n− 1, n|1, 2, 3), . . . , A(n− 2k + 2, . . . , n|1, . . . , 2k − 1),
A(1|n), A(1, 2, 3|n− 2, n− 1, n), . . . , A(1, . . . , 2m− 1|n− 2m+ 2, . . . , n).

Proof. The entries in the positions (1, 1) and (n, n) can be increased arbi-
trarily without loosing the property of total positivity because they enter into the
top left and bottom right position, respectively, in every submatrix in which they
lie. This corresponds to the fact that in the cases 1(+) and 4(+) the set S is
empty for i = j = 1, n. In the remaining cases we present the proof here only for
A(τ) = A− τE2m,2k (case 1(−)); the proof of the other perturbations is similar. If
2m = n, then 2k = n, too. The only initial minor containing ann − τ is detA(τ).
By expansion of detA(τ) along its bottom row we obtain

detA(τ) = detA− τ detA(n)

from which the condition

0 ≤ τ < detA

detA(n)

follows. We assume now that 2m < n. For α ∈ Qκ,n we set

φ(α) :=
detA(α|α)

detA(α ∪ {2m}|α ∪ {2k})
.

We further use the intuitive notation

φ(0) :=
detA

detA(2m|2k)
.

First we show the inequality

φ(0) ≤ φ(n).(4.2)

The inequality follows by Proposition 3.2, setting α := α′ := {1, 2, . . . , n}, β :=
β′ := {1, 2, . . . , n − 1}, γ := β\{2m}, γ′ := β′\{2k}, δ := α\{2m}, δ′ := α′\{2k}.
Then the assumptions of Proposition 3.2 are fulfilled with p = p′ = n, q = q′ = n−2,
and therefore r = 2, α′′ = {1, 2}, β′′ = {1, 3}. For ω the following four sets can be
chosen

{1, 2}, {2, 3}, {3, 4}, {1, 2, 3, 4}.
In all four cases the inequality (3.1) is fulfilled. Applying (4.2) to A(n), A(n −
1, n), . . . , A(2m+ 1, . . . , n), we obtain the chain of inequalities

φ(0) ≤ φ(n) ≤ φ(n− 1, n) ≤ · · · ≤ φ(2m+ 1, . . . , n).(4.3)

Now we show that all the row-initial minors of A(τ) are positive; the proof of the
positivity of the column-initial minors is similar. Since by expansion of detA(τ)
along its 2mth row

detA(τ) = detA− τ detA(2m|2k),

we obtain the condition τ < φ(0). Similarly for s = 0, 1, . . . , n− 2m− 1,

detA(n− s, . . . , n)(τ) =

detA(n− s, . . . , n)− τ detA(2m,n− s, . . . , n|2k, n− s, . . . , n)
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is positive if τ < φ(n− s, . . . , n). Therefore by (4.3), all leading principal minors of
A(τ) (β1 = 1) are positive if τ < φ(0).

Now we consider the row-initial minors detA[α|β](τ), where β =
(β1, β2, . . . , βs) with β1 > 1. If β1 is odd these minors are constant or strictly
increasing with respect to τ so that they remain positive under the perturbation.
If β1 is even, we apply the proof in the case β1 = 1 to the submatrix A[α|β](τ) and
obtain the remaining conditions.

By Proposition 3.1 it follows that A(τ) is TP if τ is taken as the minimum
of S in case 1(−). The necessity follows from the fact that all the initial minors
are linear functions in τ and that therefore for minS ≤ τ there is an initial minor
which is nonpositive. �

Remark 4.2. Cases 1(−) and 4(−) give for i = j = 1, 2 the bound detA/ detA(i)
on τ ; see [6, Theorems 4.2 and 4.3] and [5, Theorems 9.5.4 and 9.5.5] for related
statements. In case 3(+) setting i = 1 and j = 2 we get the bound detA/ detA(1|2),
see [6, Theorem 4.7] and [5, Theorem 9.5.8].

The next theorem shows that the set S in Theorem 4.1 is minimal.

Theorem 4.3. For an arbitrary TP n-by-n matrix A the set S of determinantal
ratios listed in Theorem 4.1 cannot be reduced in each of the eight cases.

Proof. We present the proof only for the case 1(-); the proof of the other
seven cases is similar.
It suffices to show that the following ratios are not comparable if A runs over the
set of the n-by-n TP matrices

b :=
detA

detA(2m | 2k)
,

cκ :=
detA(n− 2κ+ 3, . . . , n | 1, . . . , 2κ− 2)

detA(2m,n− 2κ+ 3, . . . , n | 1, . . . , 2κ− 2, 2k)
, κ = 2, . . . , k,

dµ :=
detA(1, . . . , 2µ− 2 | n− 2µ+ 3, . . . , n)

detA(1, . . . , 2µ− 2, 2m | 2k, n− 2µ+ 3, . . . , n)
, µ = 2, . . . ,m.

We show here only that the ratios cκ and dµ are not comparable; the proof of the
other cases is similar (and easier). We first prove that the inequality cκ ≤ dµ does
not hold for all TP n-by-n matrices A. To apply Proposition 3.2, we choose

α := {1, . . . , n− 2κ+ 2} , α′ := {2κ− 1, . . . , n} ,
δ := {2µ− 1, . . . , n} , δ′ := {1, . . . , n− 2µ+ 2} ,
β := α \ {2m} , β′ = α′ \ {2k} ,
γ := δ \ {2m} , γ′ = δ′ \ {2k} .

Then we have
α ∪ γ = β ∪ δ = α′ ∪ γ′ = β′ ∪ δ′

by

2µ− 1 < 2m ≤ n− 2κ+ 2,

2κ− 1 < 2k ≤ n− 2µ+ 2,

hence p = p′ = n;

α ∩ γ = {2µ− 1, . . . , n− 2κ+ 2} \ {2m} ,
α′ ∩ γ′ = {2κ− 1, . . . , n− 2µ+ 2} \ {2k} ,
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hence q = q′ = n− 2κ− 2µ+ 3;

η : {1, . . . , 2µ− 2, 2m} ∪ {n− 2κ+ 3, . . . , n} → {1, . . . , 2κ+ 2µ− 3} ,
η′ : {2k, n− 2µ+ 3, . . . , n} ∪ {1, . . . , 2κ− 2} → {2κ+ 2µ− 2, . . . , 4κ+ 4µ− 6} ,

α
′′

= η({1, . . . , 2µ− 2, 2m}) ∪ η′({1, . . . , 2κ− 2})
= {1, . . . , 2µ− 1} ∪ {2κ+ 4µ− 3, . . . , 4κ+ 4µ− 6} ,

β
′′

= η({1, . . . , 2µ− 2}) ∪ η′({1, . . . , 2κ− 2, 2k})
= {1, . . . , 2µ− 2} ∪ {2κ+ 4µ− 4, . . . , 4κ+ 4µ− 6} .

Let w := {2κ+ 4µ− 4, 2κ+ 4µ− 3}. Then the inequality (3.1) is not fulfilled and
by Proposition 3.2 there exists a TN matrix A1 for which the inequality cκ > dµ
holds. By interchanging the role of sets α, α′, γ, γ′ with the sets β, β′, δ, δ′, we find
by Proposition 3.2 (choosing w := {2µ− 2, 2µ− 1}) a TN matrix A2 for which the
inequality cκ < dµ holds. So the ratios cκ and dµ are not comparable on the set of
the TN matrices. By using Proposition 3.3 we find two TP matrices satisfying the
respective inequalities which shows that also on the set of TP matrices the ratios
cκ and dµ are not comparable. �

Example 4.4. Let A be the Pascal matrix of order 4, i.e.,

A =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

 .

Then A is TP , see, e.g., [5, Example 0.1.6]. In Table 1 we give the largest inter-
val from which τ can be chosen according to Theorem 4.1 such that the matrix
A(τ) := A+ τEij is TP , i, j = 1, . . . , n, i ≤ j. The intervals are given in the (i, j)
position of the respective entry. In each case, if τ is chosen as an endpoint of the
interval, the respective matrix A(τ) contains a vanishing minor.

(− 1
4 ,∞) (− 1

6 ,
1
6 ) (− 1

4 ,
1
8 ) (− 1

3 ,
1
3 )

(− 1
14 ,

1
4 ) (− 1

7 ,
1
11 ) (− 1

3 ,
1
3 )

(− 1
10 ,

1
2 ) (−1, 13 )

(−1,∞)

Table 1. The largest perturbation intervals in Example 4.4.

5. TP Completion Problems

In this section we consider TP completion problems for some new patterns of
the unspecified entries.

We recall from [9] the definition of the patterns P1, P1
′, and P2. Let A be an

n-by-m matrix. We say that A has a P1 or P1
′ pattern if A has just one unspecified

entry, viz. in the (1,m) or (n, 1) positions, respectively. The P2 pattern has just
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two unspecified entries, viz. in positions (1,m) and (n, 1). Since by Proposition 3.1
a matrix is TP if and only if its initial minors are positive, a partial TP matrix
with a P1 pattern has a TP completion if and only if the upper right entry can be
chosen so that the upper right minors with contiguous index sets are all positive.
A similar condition holds for a P ′1 pattern. We introduce two further patterns. We
say that A has a P3 pattern if 3 ≤ m and the unspecified entries are aij ,

i = 1, . . . , l, j = 3, . . . , k, and i = r, . . . , n, j = 1, . . . ,m− 2,
with l ∈ {1, . . . , n− 1}, r ∈ {l + 1, . . . , n} .

A has a P4 pattern if 2 ≤ n, 4 ≤ m and the unspecified entries are aij ,

i = 1, . . . , l, j = 1, . . . , k, and i = 1, . . . , r, j = k + 3, . . . ,m, and i =
p, . . . , n, j = 1, . . . , h, and i = t, . . . , n, j = h+ 3, . . . ,m,
with 1 ≤ r ≤ l < t ≤ p ≤ n, h, k ∈ {1, . . . ,m− 3} .

Examples 1 and 2 in [9] and 9.1.1 in [5] show that the P1, P ′1, and P2 patterns are
not TP completable if 4 ≤ min {n,m}. This explains why in the sequel the index
ranges will often start at 3.

Theorem 5.1. Let A be an n-by-m partial TP matrix with the unspecified
entries aij, i = 1, . . . , l, j = 3, . . . , k, where l ≤ n, k ≤ m. Then A is TP
completable.

Proof. Let Blk := A[l, . . . , n | 1, 2, k, . . . ,m]. Then by Proposition 3.5, Blk is
TP completable. We enter the value for the unspecified entry alk into the matrix
A and call the resulting matrix Alk. If l > 1 let Bl−1,k := Alk[l − 1, . . . , n |
1, 2, k, . . . ,m]. Then by Proposition 3.5, Bl−1,k is TP completable and similarly
as for the entry alk we obtain the n-by-m partial TP matrix Al−1,k which has one
unspecified entry less than Alk. Now we continue in this manner until we find values
for all the unspecified entries in column k resulting in the partial TP matrix A1k.
If k > 3 repeat the above process with the partial TP matrix A1k to find values for
the unspecified entries in the columns k − 1, . . . , 3. At the end of this process we
get the matrix A13 which is TP . �

Corollary 5.2. Let A be an n-by-m partial TP matrix with the unspecified
entries aij, i = r, . . . , n, j = k, . . . ,m− 2, where r ≤ n, k ≤ m− 2. Then A is TP
completable.

Proof. The matrix A# is a partial TP matrix with the same pattern of un-
specified entries as the one considered in Theorem 5.1, whence A# is TP com-
pletable. Then A is TP completable, too. �

By application of Theorem 5.1 and Corollary 5.2 to A, A#, or AT it follows that
a partial TP matrix A whose pattern is a single echelon pattern is TP completable
if and only if it contains no P1 or P

′

1 as a subpattern. This settles [9, Conjecture
1] in a special case.

Theorem 5.3. Let 3 ≤ m and A be an n-by-m partial TP matrix with the
unspecified entries a1j, j = 3, . . . ,m, and ai1, i = l, . . . , n, with l ≤ 4. Then A is
TP completable.

Proof. If l = 1 or 2 then it is easy to find values for the unspecified entries in
the positions (1, 1) and (2, 1), respectively, so let l ∈ {3, 4}. Let B1 := A[2, . . . , n |
1, . . . ,m]. Then by taking the transpose of B1 and using Theorem 5.1 (with m
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replaced by n), B1 is TP completable. We enter the values for the unspecified
entries ai1, i = l, . . . , n, into the matrix A and call the resulting matrix A1. The
matrix A1 is a partial TP matrix with the unspecified entries in the first row. By
Theorem 5.1 A1 is TP completable, and so A is TP completable. �

Theorem 5.4. Let 3 ≤ m, 4 ≤ n, and A be an n-by-m partial TP matrix
with the unspecified entries aij, i = 1, . . . , l, j = 3, . . . ,m, and i = l + 3, . . . , n,
j = 1, . . . , h, where h ≤ m. Then A is TP completable.

Proof. Let Bh := [l + 1, . . . , n | h, . . . ,m]. Then Bh is a partial TP matrix
and by Theorem 5.1 (taking the transpose), Bh is TP completable. We enter the
values for the unspecified entries of Bh into the matrix A and call the resulting
matrix Ah. Repeat the last step to find values for the unspecified entries in the
lower part of the columns h−1, . . . , 2. At the end of this process we get the partial
TP matrix A2 having the unspecified entries in the upper right corner and in the
first column below the position (1, l+ 3). To find values for the unspecified entries
in the first column, we proceed analogously to the proof of Theorem 5.3. Let
C := A2[l+ 1, . . . , n | 1, . . . ,m]. Then by Theorem 5.1 C is TP completable. Since
only the initial minors of A need to be positive, C can be completed independently
of the entries of A[1, . . . , l | 1, 2]. We enter the values for the unspecified entries of
the first column into the matrix A2 and call the resulting matrix A1; then A1 is a
partial TP matrix with the unspecified entries in the upper right corner. We apply
Theorem 5.1 on A1 and it follows that A1 is TP completable. Therefore A is TP
completable. �

The following theorem combines the patterns of Theorem 5.1 and Corollary 5.2
and is related to Proposition 3.4.

Theorem 5.5. If A = (aij) is an n-by-m partial TP matrix with a P3 pattern,
then A is TP completable.

Proof. Let A be an n-by-m partial TP matrix with a P3 pattern. We distin-
guish two cases.
Case (1): k = m. Let B1 := A[l+ 1, . . . , n | 1,m− 1,m]. Then by applying Propo-
sition 3.5 successively to Cρ := B1[l + 1, . . . , ρ | 1,m− 1,m] we find values for the
unspecified entries aρ1, ρ = r, . . . , n. Therefore B1 is TP completable. We enter
the values for the unspecified entries of B1 into the matrix A and call the resulting
matrix A1. To find values for the unspecified entries in the second column of A1

in and below position (r, 2) we similarly apply Proposition 3.5 to the submatrix
B2 := A1[l + 1, . . . , n | 1, 2,m − 1,m]. This completion can be accomplished inde-
pendently of the entries of A[1, . . . , l | 1, 2], see the proof of Theorem 5.4. We enter
the values for the unspecified entries of B2 into the matrix A and call the resulting
matrix A2. Let B3 := A2[l + 1, . . . , n | 1, 2, . . . ,m]. Then B3 is partial TP and by
Corollary 5.2 TP completable. We enter the values for the unspecified entries of
B3 into the matrix A2 and call the resulting matrix A3. By Theorem 5.1 A3 is TP
completable and hence A is TP completable.
Case (2): k < m. We consider first the case k = m − 1. If l + 1 = r, then we
can choose a positive number for the unspecified entry al,m−1 such that the matrix
remains partial TP . If l + 1 < r, let Bl,m−1 := A[l, . . . , r − 1 | 1, 2,m − 1,m] and
B′l,m−1 := A[l, . . . , n | m−1,m]. Then by Proposition 3.5 both submatrices are TP
completable. Moreover, we can choose in both matrices a common value for the
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unspecified entry al,m−1 because the only nontrivial initial minor of the submatrix
B′l,m−1 containing this entry, viz. detB′l,m−1[l, l + 1|m − 1,m], is also an initial
minor of the submatrix Bl,m−1.

We enter the value for the unspecified entry al,m−1 into the matrix A and
call the resulting matrix Al,m−1. Repeating this process we find values for the
unspecified entries in column m−1 and finally obtain the partial TP matrix A1,m−1.
Let C := A1,m−1[1, . . . , r − 1 | 1, . . . ,m]. By Theorem 5.1, C is TP completable.
We enter the values for the unspecified entries in A1,m−1 and call the resulting
matrix A′, which is a partial TP matrix. By Corollary 5.2, A′ is TP completable
and we can conclude that A is also TP completable.
If k < m− 1 we follow the proof in the case k = m− 1 but we may end the proof
already with the definition of the matrix C. �

Theorem 5.6. If A = (aij) is an n-by-m partial TP matrix with a P4 pattern,
then A is TP completable.

Proof. Let A be an n-by-m partial TP matrix with a P4 pattern. Without
loss of generality we may assume that l = r and p = t. Otherwise let B0 :=
A[r+1, . . . , p−1|1, . . . ,m]. Then B0 has a jagged pattern and can be TP completed
by Proposition 3.4 (independently of the entries of A[1, . . . , r|k + 1, k + 2] and
A[p, . . . , n|h + 1, h + 2]). In what follows we therefore assume that l = r and
p = t. Let B1 := A[1, . . . , p − 1|k + 1, . . . ,m]; then B1 is TP completable by
Theorem 5.1. We enter the values for the unspecified entries of B1 into the matrix
A[1, . . . , p− 1|1, . . . ,m] and call the resulting matrix B2. Since B2 is a partial TP
matrix with a jagged pattern it is TP completable by Proposition 3.4. We enter
the values for the unspecified entries of B2 into the matrix A and call the resulting

matrix A1. Proceeding with A#
1 we obtain similarly the TP completion of A1 and

in this way of A, too. �

Theorem 5.7. If A = (aij) is an n-by-m partial TP matrix with the unspecified
entries aij i = 1, . . . , l, j = 1, . . . , k, and i = 1, . . . , r, j = k + 3, . . . ,m, and
i = t, . . . , n, j = 1, . . . ,m− 2, with r ≤ l < t, then A is TP completable.

Proof. Without loss of generality we may assume that r = l, see the proof
of Theorem 5.6. Let C1 := A[r + 1, . . . , n | 1, . . . , k,m − 1,m]. Then C1 is TP
completable by Corollary 5.2. We enter the values for the unspecified entries of C1

into the matrix A and call the resulting matrix A1. Let C2 := A1[r + 1, . . . , n |
1, . . . , k + 1,m − 1,m]. Then by an argument similar to that used in the proof of
Theorem 5.1, by starting from the unspecified entry at,k+1, and proceeding down-
wards, we can find values for the unspecified entries in C2; so C2 is TP completable.
We enter the values for the unspecified entries of C2 into the matrix A1 and call
the resulting matrix A2. Similarly, we can find values for the unspecified entries
in the column k + 2, then we enter these values into the matrix A2 and call the
resulting matrix A3. Let D := A3[r + 1, . . . , n | 1, . . . ,m]; then D is a partial TP
matrix with the same type of pattern as the one treated in Corollary 5.2, thus D
is TP completable. We enter the values for the unspecified entries in D into the
matrix A3 and call the resulting matrix A4, where A4 is a partial TP matrix. Let
D1 := A4[1, . . . , n|k + 1, . . . ,m]; then D1 is TP completable by Theorem 5.1 (with
k = m). We enter the values for the unspecified entries of D1 into A4 and call
the resulting matrix A5 which is partial TP . Since A5 has a jagged pattern, it is
completable by Proposition 3.4, whence A is TP completable. �
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Theorem 5.8. If A = (aij) is an n-by-m partial TP matrix with the unspecified
entries aij i = 1, . . . , l, j = 1, . . . , k, and i = 1, . . . , r, j = k + 3, . . . ,m, and
i = t, . . . , n, j = h, . . . ,m, with r ≤ l < t, and h < k, then A is TP completable.

Proof. We may assume without loss of generality that r = l. Otherwise we
proceed as follows: Let B1 := A[r + 1, . . . , t − 1|h, . . . ,m]. Then B1 is partial
TP with a jagged pattern, thus TP completable. If h > 1 we have to take into
account the entries of A[t, . . . , n|1, . . . , h−1] when we want to extend the completion
to the left. We proceed element-wise by taking successively the entries al,h−1,
al−1,h−1, . . ., ar+1,h−1, al,h−2, . . ., ar+1,h−2, . . ., ar+1,1. For a fixed entry we
consider the submatrices which have the chosen entry as the only unspecified entry,
viz in position (1, 1). For each such submatrix we can find a positive number such
that the matrix is TP . Then we take the maximum of all these positive numbers
(for the chosen entry).

The matrix C1 := A[r + 1, . . . , n | 1, . . . , k + 1] is a partial TP matrix with a
jagged pattern and by Proposition 3.4 C1 is TP completable. We enter the values for
the unspecified entries of C1 into the matrix A and call the resulting matrix A1. Let
C2 := A1[r+1, . . . , n | 1, . . . , k+2], and C ′2 := A1[1, . . . , n | k+1, k+2]. Then both
submatrices are partial TP matrices with jagged patterns, and so by the argument
used in the proof of Theorem 5.5, Case (2), common values for the unspecified
entries can be found. We enter the values for the unspecified entries of C2 into the
matrix A1 and call the resulting matrix A2. Let C3 := A2[r + 1, . . . , n | 1, . . . ,m].
Then C3 is a partial TP matrix with a jagged pattern, thus C3 is TP completable.
We enter the values for the unspecified entries of C3 into the matrix A2 and call
the resulting matrix A3. Since A3 is a partial TP matrix with the same type of
pattern as the one considered in the proof of Theorem 5.6, A3 is TP completable.
Hence A is TP completable. �

Theorems 5.7 and 5.8 represent certain instances of a jagged echelon pattern
with no P1, P

′

1, or P2 as a subpattern. Thus both theorems and the following remark
settle [9, Conjecture 2] in some special cases leaving this conjecture unresolved only
in the case of a double echelon pattern.

Remark 5.9. The following patterns can be proven to be TP completable by
using similar methods as in the proofs of the Theorems 5.6, 5.7, and 5.8.
The entries aij are unspecified for

(1) i = 1, . . . , l, j = 1, . . . , k, and i = r, . . . , n, j = 1, . . . ,m− 2, with l < r;

(2) i = 1, . . . , l, j = 3, . . . ,m, and i = r, . . . , n, j = k, . . . ,m, with l < r;

(3) i = 1, . . . , l, j = 3, . . . ,m, and i = r, . . . , n, j = 1, . . . , k, and i = t, . . . , n,
j = k + 3, . . . ,m, with l < t < r;

(4) i = 1, . . . , l, j = 1, . . . , k, and i = r, . . . , n, j = 1, . . . , h, and i = t, . . . , n,
j = h+ 3, . . . ,m, with l < t < r and h < k.

Remark 5.10. By using [4, Theorem 5.4] instead of Proposition 3.5 all the
results of Section 5 carry over to the case that the given matrix A is partial TPk,
k ≥ 4.
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