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Abstract. We consider a structural truss problem whereall of the physical model parameters
are uncertain: not just the material values and applied loads, but also the positions of the nodes
are assumed to be inexact but bounded and are represented by intervals. Such uncertainty
may typically arise from imprecision during the process of manufacturing or construction, or
round-off errors. In this case the application of the finite element method results in a system
of linear equations with numerous interval parameters which cannot be solved conventionally.
Applying a suitable variable substitution, an iteration method for the solution of a parametric
system of linear equations is firstly employed to obtain initial bounds on the node displacements.
Thereafter, an interval tightening (pruning) technique isapplied, firstly on the element forces
and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the
interval solutions for the forces and displacements.
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1 INTRODUCTION

Many sources of uncertainty exist in models for the analysisof structural mechanics prob-
lems. These include, e.g., measurement imprecision, manufacturing or fabrication imperfec-
tions, and round-off errors. An uncertain quantity is oftenassumed to be unknown but bounded,
i.e. lower and upper bounds for this quantity can be provided(without assigning any probability
distribution). Therefore, these quantities can be represented by intervals. Interval arithmetic,
e.g. [1, 12], provides the means to keep track of such uncertainties throughout the whole com-
putation. Consequently, the result, which is again an interval quantity, isguaranteedto contain
the exact result.

The numerical method most frequently used in structural mechanics is the finite element
method (FEM). Its accuracy is affected by discretisation and rounding errors and model and
data uncertainty. In this paper we focus on parametric uncertainty and rounding errors. The
source of parametric uncertainty (sometimes also called data uncertainty) is the lack of precise
data needed for the analysis. In the FEM, parameters describing the geometry, material, and
loads may be uncertain. Parametric uncertainty may result from a lack of knowledge (epistemic
uncertaintyor reducible uncertainty), e.g. loads are not exactly known, or an inherent variability
(aleatory uncertaintyor irreducible uncertainty) in the parameters, e.g. material parameters are
only known to vary within known bounds, cf. [9].

For a decade or more the interval arithmetic approach has been used to handle parameter
uncertainty in the application of the FEM to problems in structural mechanics, e.g. [3, 4, 10,
11, 13, 14, 15], to name but a few. Most of these papers consider the case of affine parametric
dependency. Typically, more advanced models involve polynomial or rational parameter de-
pendencies, in which case the coefficients of the systems of linear equations to be solved are
polynomial or rational functions of the parameters. In [5] we present an approach to solve such
systems. Therein we employ a general-purpose fixed-point iteration using interval arithmetic
and an efficient method for bounding the range of a multivariate polynomial over a given box
based on the expansion of this polynomial into Bernstein polynomials [6, 17]. As an example,
we discuss a two-bay two-story frame involving 13 and 37 parameters.

The problem that the lengths of the bars of a truss system are uncertain, due to fabrication
errors, is considered in [10]. However, in real-life problems, not only the lengths are uncertain
but also the positions of the nodes are not exactly known. To the best of our knowledge, this
problem has not been considered so far in the literature.

In this paper we present a simple model with uncertain node locations, consisting of six
linear truss elements joined at five nodes. As well as uncertain node coordinates, the material
values (Young’s modulus and cross-sectional area) and loading forces are also interval param-
eters. As a consequence of the uncertain node locations, both the element lengths and angles
in the problem are also interval values. With a suitable choice of variable substitution for the
angles appearing in the system matrix, the resulting parametric system of linear equations is
firstly solved by the aforementioned general-purpose parametric fixed-point iteration. How-
ever, the tightness of the resulting displacement intervals is not wholly satisfactory. Therefore,
two interval pruning techniques are applied to compute and contract the interval enclosures
for the element forces and node displacements. These intervals are compared to a tight inner
estimation of the true interval solution obtained by a MonteCarlo simulation.

This paper is organised as follows. The next section consists of a brief introduction to in-
terval arithmetic. The model is then presented in detail in Section 3, along with its parameter
values. The collection of methods used to solve the problem,including the iteration method for
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parametric systems and two interval pruning techniques aredescribed in Section 4. The numer-
ical results may be found in Section 5 and we conclude with some suggestions for continuation
of this work.

2 INTERVAL ARITHMETIC

Let IR denote the set of the compact, nonempty real intervals. The arithmetic operation
◦ ∈ {+,−, ·, /} on IR is defined in the following way. Ifa = [a, a], b = [b, b] ∈ IR, then

a + b = [a + b, a + b],

a − b = [a − b, a − b],

a · b = [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}],
a / b = [min{a/b, a/b, a/b, a/b}, max{a/b, a/b, a/b, a/b}], if 0 /∈ b.

As a consequence of these definitions we obtain the inclusionisotonicity of the interval arith-
metic operations: Ifa1, b1 ∈ IR with a1 ⊆ a andb1 ⊆ b then it holds that

a1 ◦ b1 ⊆ a ◦ b if a1 ◦ b1 is defined.

Note that some relations known to be true in the setR, e.g. the distributive law, are not valid
in IR. Here we have the weaker subdistributive law

a · (b + c) ⊆ ab + ac for a, b, c ∈ IR.

By IRn andIRn×n we denote the set ofn-vectors andn-by-n matrices with entries inIR,
respectively.

Further details on arithmetic with intervals may be found in[1, 12].

3 THE MODEL

We consider the simple mechanical truss structure comprising five nodes connected by six
linear elements as depicted in Figure 1; the elements are numbered in circles and the coordinates
of the nodes are also given. Two of the nodes, 1 and 2, are fixed;the other three are free-moving.
A downward loading force of50kN is separately applied to both nodes 4 and 5.

Upon loading, we wish to compute the displacements of nodes 3–5, viz.u3, v3, u4, v4, u5, v5,
and the resultant normal forces in all six elements,S1, . . . , S6. Each of these is an interval
quantity since the uncertainty in the input data causes uncertainty in the solution. We wish to
compute intervals which tightly contain the true ranges of values for each of these variables.

The uncertain paramaters are as follows (see also Table 1):

• The positions of the five nodes of the truss (before loading) are subject to an uncertainty
of ±0.005 in both thex- and y-directions. With metres as the coordinate units, this
corresponds to a variation of±5mm. Correspondingly, the elements are of uncertain
length (depending upon configuration, they may vary upto±10

√
2mm).

• The product of the elements’ cross-sectional area with the Young’s modulus is subject to
an uncertainty of±5%. The nominal value is taken as an IPE 160 steel element (A =
20.1cm2, E = 2.1 ∗ 108kN/m2). This results inEA := [400995, 443205]. Note that there
is a single, globalEA parameter.
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Figure 1: Mechanical Truss Model with Six Elements

• The loading forces applied to all nodes are subject to an uncertainty of±1kN in both the
x- andy-directions. This applies even to nodes which do not have a loading force applied
(i.e. node 3).

Table 1: Interval Parameters for the Truss Model

Parameter Nominal Value Uncertainty
Young’s modulus∗ area EA 422100 kN ±21105 kN (±5%)

(x1, y1) (0, 2) ±0.005 m
(x2, y2) (0, 0) ±0.005 m

Node coordinates (x3, y3) (2, 1) ±0.005 m
(x4, y4) (2, 0) ±0.005 m
(x5, y5) (4, 0) ±0.005 m
Fx3

, Fy3
0 kN, 0 kN ±1 kN

Loading forces Fx4
, Fy4

0 kN, −50 kN ±1 kN
Fx5

, Fy5
0 kN, −50 kN ±1 kN

4 METHODOLOGY

Our solution procedure consists of the following stages:

1. Application of a variable substitution to generate the symbolic system stiffness matrix
appearing in the FEM in terms of the interval parameters.

2. Initial enclosures for the node displacements obtained by applying a parametric solver to
the interval system.
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3. Initial enclosures for the element forces computed from these node displacements.

4. An interval tightening method applied to the element forces.

5. An interval tightening method applied to the node displacements.

4.1 Finite element method

The usual FEM [2, 18] proceeds by the assemblage of a single large system of linear equa-
tions. For each structural element in the problem (see Figure 2), anelement stiffness matrixis
created, expressed in terms ofcos θ, sin θ, EA, andL, the element length.

(x , y )r r

(x , y )l l
u l

vl

vr

ur

x

y

L

θ

Figure 2: Arrangement of a Single Element Connecting Left-Hand and Right-Hand Nodes

Since the node locations are uncertain, the angles of the various elements are also interval
quantities. However, the angles and the element lengths areonly implicit interval parameters.
Therefore, by means of the following substitutions, we can rearrange each element matrix so
that it is expressed only in terms of the explicit interval parameters, viz.EA and the node
coordinates,(xl, yl) and(xr, yr):

cos θ =
xr − xl

L

sin θ =
yr − yl

L
(1)

L =
√

(xr − xl)2 + (yr − yl)2

This yields the following element stiffness matrix:

k = EA

((xr−xl)2+(yr−yl)2)
3
2

·




(xr − xl)
2 (xr − xl)(yr − yl) −(xr − xl)

2 −(xr − xl)(yr − yl)
(xr − xl)(yr − yl) (yr − yl)

2 −(xr − xl)(yr − yl) −(yr − yl)
2

−(xr − xl)
2 −(xr − xl)(yr − yl) (xr − xl)

2 (xr − xl)(yr − yl)
−(xr − xl)(yr − yl) −(yr − yl)

2 (xr − xl)(yr − yl) (yr − yl)
2





The global system stiffness matrixK is assembled in the usual way. If we were to solve
the resultant system of equations in the conventional fashion, i.e. by substituting each of the

5



variables by its literal value (in this case, intervals instead of floating-point numbers), we would
need to apply a linear system solver (e.g. interval Gaussianelimination [1, 12]), using interval
arithmetic where required. However, we will see that in the interval case such an approach is
hopeless. Instead, we must store the system matrix in symbolic form.

It is worth mentioning that alternative element stiffness matrices can be obtained by the use
of the following alternative transformation:

cos θ =
1 − t2

1 + t2
, sin θ =

2t

1 + t2
, (2)

wheret = tanθ
2
. In this case the element stiffness matrix is as follows:

k =
EA

L(1 + t2)2
·





(1 − t2)2 2t(1 − t2) −(1 − t2)2 −2t(1 − t2)
2t(1 − t2) 4t2 −2t(1 − t2) −4t2

−(1 − t2)2 −2t(1 − t2) (1 − t2)2 2t(1 − t2)
−2t(1 − t2) −4t2 2t(1 − t2) 4t2





We shall use the former transformation; the relative meritsof each are briefly discussed in
Section 5.2.

4.2 Parametric system solution

We now have a system of linear equations for the node displacementsui, vi, i = 3, . . . , 5:

Ku = F,

whereK is the global system stiffness matrix assembled from the element stiffness matriceski,
i = 1, . . . , 6, u = (u3 v3 u4 v4 u5 v5)

T is the vector of node displacements andF = (Fx3
Fy3

Fx4
Fy4

Fx5
Fy5

)T is the vector of loading forces.
We will now consider the general case of a system of linear equations with interval parame-

ters. Suppose we have a linear system

A(p) · x = b(p), (3)

where the coefficients of them × m matrixA(p) and the vectorb(p) are functions ofn param-
eters varying within given intervals

aij(p) = aij(p1, . . . , pn), bi(p) = bi(p1, . . . , pn), i, j = 1, . . . , m, (4)

p ∈ [p] = ([p1], . . . , [pn])T . (5)

The set of solutions to the above system, called theparametric solution set, is

Σ = Σ (A(p), b(p), [p]) := {x ∈ Rm | A(p) · x = b(p) for somep ∈ [p]} .

The setΣ is compact ifA(p) is nonsingular for everyp ∈ [p]. For a nonempty bounded set
S ⊆ Rm, define its interval hull by�S := ∩{[s] ∈ IRm | S ⊆ [s]}. It is generally expensive
to obtainΣ or � Σ, so instead we seek an interval vectorΩ for which it is guaranteed that
Ω ⊇ � Σ ⊇ Σ.

We apply a general-purpose self-verified method for bounding the solution set of a paramet-
ric linear system, which does not assume any particular structure among the parameter depen-
dencies. This method derives from inclusion theory for nonparametric problems, see [16] and
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the references therein. In [16, Theorem 4.8] a straightforward generalisation to linear systems
with linear parameter dependencies is given. The corresponding theorems can be modified and
applied to linear systems involving nonlinear parameter dependencies [14, 15]. The following is
a general formulation of the enclosure method for linear systems involving arbitrary parametric
dependencies.

Theorem 1. Consider a parametric linear system defined by Eqs. 3 – 5. LetR ∈ Rm×m,
[y] ∈ IRm, x̃ ∈ Rm be given and define[z] ∈ IRm, [C] ∈ IRm×m by

[z] := �{z(p) = R (b(p) − A(p)x̃) | p ∈ [p]},
[C] := �{C(p) = I − R · A(p) | p ∈ [p]},

whereI denotes the identity matrix. Define[v] ∈ IRm by means of the following Gauss-Seidel
iteration

[vi] := {[z] + [C] · ([v1], ..., [vi−1], [yi], . . . , [ym])T}i, 1 ≤ i ≤ m.

If [v] $ [y], thenR and every matrixA(p) with p ∈ [p] are regular, and for everyp ∈ [p] the
unique solution̂x = A−1(p)b(p) of the system defined by Eqs. 3–5 satisfiesx̂ ∈ x̃ + [v].

In our computations we have chosenR ≈ Ǎ−1 andx̃ = R · b(p̌), wherep̌ is the midpoint of
[p] andǍ = A(p̌).

The above theorem generalises [16, Theorem 4.8] by requiring a sharp enclosure ofC(p) :=
I − R · A(p) for p ∈ [p], instead of using the interval extensionC([p]). Examples demonstrat-
ing the application of the generalised inclusion theorem can be found in [14, 15]. A detailed
description of this algorithm can be found in [14].

4.3 Initial node displacement intervals

After applying the above parametric solver, we have preliminary interval enclosures for the
node displacements. By means of the following formula from the FEM [18, p. 98], evaluated
using interval arithmetic,

Si =
EA

L
(− cos θ − sin θ cos θ sin θ)ui, (6)

whereSi is the resulting normal force (either tension or compression) in elementi andui =
(ul vl ur vr)

T is the vector of displacements for theith element’s left- and right-hand nodes,
preliminary interval enclosures for the element forces canalso be obtained.

4.4 Interval tightening (element forces)

At each free-moving node (nodes 3, 4, and 5 in our example), all forces (element forces and
loading forces) must be in equilibrium, in both thex- andy-directions. For example, at node 3,
the following must hold:

S1 cos θ1 + Fx3
= S4 cos θ4 + S5 cos θ5 (7)

S1 sin θ1 + Fy3
= S4 sin θ4 + S5 sin θ5 (8)
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These can be rearranged to give one or more explicit formulaefor each element force. Again
at node 3, we have:

S1 =
S4 cos θ4 + S5 cos θ5 − Fx3

cos θ1

S1 =
S4 sin θ4 + S5 sin θ5 − Fy3

sin θ1

S4 =
S1 cos θ1 − S5 cos θ5 + Fx3

cos θ4

S4 =
S1 sin θ1 − S5 sin θ5 + Fy3

sin θ4

S5 =
S1 cos θ1 − S4 cos θ4 + Fx3

cos θ5

S5 =
S1 sin θ1 − S4 sin θ4 + Fy3

sin θ5

We apply the following interval tightening (also sometimesknown as pruning) technique:

• Using the current values for the element forces, evaluate each of the above formulae in
turn, to obtain new interval enclosures for the forces.

• For each element force, the current interval value is intersected with the new computed
enclosure(s), yielding a narrower or identical interval.

This procedure is iterated (for all nodes) as desired until the set of resulting set of intervals
for the element forces do not contract any further.

4.5 Interval tightening (node displacements)

Using (6) instead of the force equilibrium equations, the above procedure could simply be
applied in a similar fashion in order to contract the intervals for the node displacements. While
this does indeed achieve a significant contraction of the displacement intervals, their widths
are still wider than one would like. This reduced effectiveness is due to the greater number of
interval quantities appearing in (6).

We therefore employ a slightly more sophisticated pruning technique. Firstly note thatLi,
the length of elementi, is related to its normal forceSi by

Si =
EA(Li − Li0)

Li0

, (9)

whereLi0 is the starting length of elementi (i.e. before any loading forces are applied).
For this procedure, we take the new, tight enclosures for theelement normal forces obtained

above, and from (9) we use interval arithmetic to calculate an interval value forLi, i = 1, . . . , 6.
TheseLi interval values will stay fixed.

Now consider elementi. Assume for the time being that the displacement of its left-hand
node is a known point value, as is the angleθi. Given that we know the length,Li, to within
certain bounds, what is the set of possible displacements ofthe right-hand node(ur, vr) which
will satisfy this length requirement? As illustrated in Figure 3, this set is bounded by two
parallel lines which are perpendicular to the element.
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Figure 3: Bounds on the Displacements of a Node Due to Two Elements of Interval Length

Now consider elementj, wherei 6= j, where elementsi andj share the same right-hand
node. Making the same assumptions about elementj, and provided that the two elements are
not parallel, the set of possible displacements which will satisfy both length requirements is
bounded by the intersection of two such pairs of parallel lines, which describes a parallelogram
(see Figure 3). By taking the smallest bounding box surrounding this parallelogram, we obtain
new bounds for(ur, vr).

However, the displacements of the left-hand nodes and the angles of the elements are not
point values, which complicates the issue. We thus pursue a combinatorial solution: Let each
of these interval values take either their left- or right-endpoint. There are26 = 64 possible
permutations among{uil, vil , θi, ujl

, vjl
, θj}. For each such permutation, we can compute the

parallelogram intersection and its bounding box. We compute the smallest bounding box con-
tainingall these parallelograms as a new interval enclosure for(ur, vr).

Taking each node in turn, the method thus proceeds as follows:

• Take every possible pair of non-parallel elements which meet at the node, in turn. For
example, at node 3 we may consider elements 1 and 4, which meetthere, followed by
elements 4 and 5 (but not elements 1 and 5, which are parallel,i.e. the intersection of
their interval anglesθ1 andθ5 is non-empty).

• For each such pair, compute an interval enclosure for the displacement of their common
node, in thex- andy-directions, as above.

• Take the intersections of these new interval(s) with the current values for the displacement
of the node.

Again, this procedure is iterated (for all nodes) as desireduntil the set of resulting set of
displacement intervals do not contract any further.
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5 RESULTS

In this section the aforementioned methods are applied to the model described in Section 3.
We aim to compute intervals for the element forces and node displacements that are guaranteed
to contain the true solution, which consists of the set of interval ranges for these quantities
when each interval parameter is allowed to vary independently within its domain. Our solution
intervals should enclose the true solution as tightly as possible, minimising the overestimation
associated with the well-known dependency problem in interval arithmetic, e.g. [12, p. 16–17].

To obtain the initial values for the displacementsui, vi, i = 3, . . . , 5, an existing implementa-
tion of the parametric system solver for theMathematicaenvironment has been used [14]. The
other steps have been implemented in C++; apart from the Monte Carlo method, which is run
by way of comparison to estimate the true interval solution to the problem, these are interval
methods with interval variables and parameters, using interval arithmetic in place of floating-
point arithmetic. The computational results are thus guaranteed, even accounting for rounding
errors. The C++ interval libraryfilib++ [7] is employed.

5.1 Monte Carlo simulation

We wish to firstly compute a tight inner estimation to the trueinterval solution to the problem,
for which the well-known Monte Carlo method is used. This is only done so as to obtain a close
approximation to the true result, so as to be able to judge thequality of the guaranteed solution
obtained by the other methods.

All starting interval parameters are replaced by point values which are randomly chosen
within their domains, and the point problem is solved, usingthe standard FEM. The result
intervals are computed as the interval hulls (see Section 4.2) of the solutions to the point prob-
lems. Sufficient (here,106) point problems are run in order to provide a relatively tight inner
estimation to the true interval solution.

The inner estimations for the element forces and node displacements obtained by the Monte
Carlo simulation are given in Table 4.

5.2 Finite element method

With the variable substitution (1), the FEM yields a system of interval equations. However,
the literal intervals appearing in the system stiffness matrix K are of sufficient large width that
it is not possible to solve the system using interval Gaussian elimination with partial pivoting,
e.g. [8, Sect. 7] and [12, p. 157]. A naive application of the FEM in the interval case will
almost always fail or deliver result intervals that are hopelessly wide.

We note that by using the alternative variable substitution(2) the interval entries ofK actu-
ally become slightly narrower. However this does not sufficefor the system to become solvable.
Also, this transformation is less suitable for the parametric solution, due to the presence of im-
plicit interval parameters for the element lengths (which depend on the explicit parameters for
the node coordinates). This causes the result intervals forthe diplacements to be wider, since
this dependency is not taken into account.

5.3 Parametric solution

The parametric solver from Section 4.2 delivers intervals for the node displacements which
are given as the starting values in Table 3. Applying (6), these values are used to generate
intervals for the element forces, which are given as the starting values in Table 2. By themselves,
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Table 2: Results of Interval Tightening on the Element Forces

Starting Values Element Force Value
S1 [−45.95638288, 282.90173927]
S2 [−48.82304461, 198.42523281]
S3 [−250.21554428,−57.41859127]
S4 [−590.63155262, 589.77215288]
S5 [−388.47735525, 622.81537800]
S6 [−324.87728856, 113.01160160]

Iteration 1
S1 [−45.95638288, 282.90173927]
S2 [−48.82304461, 198.42523281]
S3 [−250.21554428,−57.41859127]
S4 [−94.90232257, 88.58968408]
S5 [104.66035897, 119.11859164]
S6 [−291.88018818, 90.55655220]

Iteration 2
S1 [101.85101412, 122.03185725]
S2 [−48.82304461, 198.42523281]
S3 [−250.21554428,−57.41859127]
S4 [−75.71394558, 82.79650518]
S5 [105.02672841, 118.74332277]
S6 [−107.86134409,−92.32798825]

Iteration 5
S1 [105.22056138, 118.56853389]
S2 [54.29348579, 87.12727064]
S3 [−169.90212960,−130.39412338]
S4 [−12.63973687, 7.35954242]
S5 [107.09448776, 116.62533577]
S6 [−105.64379816,−94.47996700]

Iteration 10
S1 [105.25687341, 118.53136075]
S2 [56.71628310, 84.77544565]
S3 [−166.94508270,−133.32673491]
S4 [−12.61489164, 7.32583063]
S5 [107.09474113, 116.62507624]
S6 [−105.62441053,−94.49878139]
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Table 3: Results of Interval Tightening on the Displacements

Starting Values Node Displacement Value
u3 [−0.00063546, 0.000579938]
v3 [−0.00198524,−0.000768579]
u4 [−0.00111308,−0.000298213]
v4 [−0.00206827,−0.000683625]
u5 [−0.00170792,−0.000654659]
v5 [−0.00768191,−0.00226932]

Iteration 1
u3 [−0.00047061, 0.00041743]
v3 [−0.00198524,−0.00076858]
u4 [−0.00086044,−0.00057813]
v4 [−0.00174694,−0.00105952]
u5 [−0.00166646,−0.00070149]
v5 [−0.00681014,−0.00331722]

Iteration 2
u3 [−0.00030706, 0.00023276]
v3 [−0.00177271,−0.00103279]
u4 [−0.00086044,−0.00057813]
v4 [−0.00174694,−0.00105952]
u5 [−0.00141118,−0.00098210]
v5 [−0.00596188,−0.00418864]

Iteration 5
u3 [−0.00030707, 0.00023276]
v3 [−0.00177271,−0.00103279]
u4 [−0.00086044,−0.00057813]
v4 [−0.00174694,−0.00105952]
u5 [−0.00141061,−0.00098265]
v5 [−0.00585002,−0.00429726]
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Table 4: Comparison of Results

Inner Estimation Outer Estimation
(Monte Carlo) (Param. Sol. & Tightening)

S1 [106.96910595, 116.62162466] [105.25687341, 118.53136075]
S2 [65.13454690, 76.28536251] [56.71628310, 84.77544565]
S3 [−156.77638723,−143.72365775] [−166.94508270,−133.32673491]
S4 [−7.73456140, 2.55284234] [−12.61489164, 7.32583063]
S5 [108.31623710, 115.37942086] [107.09474113, 116.62507624]
S6 [−104.25310839,−95.91022292] [−105.62441053,−94.49878139]
u3 [−0.00008324, 0.00002555] [−0.00030707, 0.00023276]
v3 [−0.00153302,−0.00124259] [−0.00177271,−0.00103279]
u4 [−0.00078219,−0.00064526] [−0.00086044,−0.00057813]
v4 [−0.00153224,−0.00124465] [−0.00174694,−0.00105952]
u5 [−0.00130037,−0.00107663] [−0.00141061,−0.00098265]
v5 [−0.00547419,−0.00459541] [−0.00585002,−0.00429726]

these result intervals for the displacements are rather wide and thus not completely satisfactory.
The resulting intervals for the element forces are much too wide and are unsatisfactory.

The computation time was 14.2 seconds on a PC with an AMD Athlon-64 3GHz proces-
sor running theMathematicaenvironment. It should be noted that such a parametric solution
rapidly becomes very time-consuming for larger systems.

5.4 Interval tightening (element forces)

The results of applying the interval tightening procedure (Section 4.4) to the element forces
obtained above are given in Table 2. The intervals converge rapidly in the first couple of itera-
tions; 10 iterations suffice to achieve convergence to 8 decimal places, for which the computa-
tion time is negligible.

The final intervals for the element forces are given in Table 4. Compared to the inner esti-
mates obtained from the Monte Carlo method, we see that the intervals forS1, S5, andS6 are
tight. Those forS2, S3, andS4 are not quite so tight, but still acceptable.

5.5 Interval tightening (node displacements)

The results of applying the interval tightening procedure (Section 4.5) to the node displace-
ments obtained by the parametric solution are given in Table3. Here, 5 iterations suffice to
achieve convergence to 8 decimal places. Again, the computation time is negligible.

By comparing with the inner estimates from the Monte Carlo method (see Table 4), we see
that the interval enclosures for the node displacements areall of a similar quality, about twice
the width of the true solution. This is a noticable improvement on the values obtained from the
parametric solver alone.

6 CONCLUSIONS

We have considered a structural truss model for which the node locations, as well as all other
parameters, are uncertain. We have performed a suitable variable substitution in order to apply
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a parametric solver and have devised interval tightening procedures for both the element forces
and node displacements, which deliver a significant improvement to the results. Through the
use of interval arithmetic, the result intervals are guaranteed to contain the true solution. The
remaining overestimation is due to some lingering occurences of the dependency problem, at
least in the current formulation.

Initial investigations have shown that it may be possible toimprove the results obtained by
the parametric solver, by augmenting the system of equations and the system stiffness matix
with additional equations and variables for the element forces (6), adding extra dependencies to
the system. However, the resultant impact on the tighteningprocedure is minimal.

In future, we wish to explore how effectively the method may be applied to truss structures
with a greater number of elements and nodes. In such cases it may be necessary to exploit
monotonicity arguments so that the parametric solution remains a viable approach.
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