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Abstract. We consider a structural truss problem wheiéof the physical model parameters
are uncertain: not just the material values and applied Isauolit also the positions of the nodes
are assumed to be inexact but bounded and are representeatdyyals. Such uncertainty
may typically arise from imprecision during the process ainfacturing or construction, or
round-off errors. In this case the application of the finitereent method results in a system
of linear equations with numerous interval parameters Widannot be solved conventionally.
Applying a suitable variable substitution, an iterationtined for the solution of a parametric
system of linear equations is firstly employed to obtaimghitounds on the node displacements.
Thereafter, an interval tightening (pruning) techniqueajgplied, firstly on the element forces
and secondly on the node displacements, in order to obtgin guaranteed enclosures for the
interval solutions for the forces and displacements.



1 INTRODUCTION

Many sources of uncertainty exist in models for the analgéistructural mechanics prob-
lems. These include, e.g., measurement imprecision, raetwing or fabrication imperfec-
tions, and round-off errors. An uncertain quantity is oféssumed to be unknown but bounded,
i.e. lower and upper bounds for this quantity can be prov{gdethout assigning any probability
distribution). Therefore, these quantities can be reprteseby intervals. Interval arithmetic,
e.g. [1,[12], provides the means to keep track of such uno&ds throughout the whole com-
putation. Consequently, the result, which is again anwalequantity, isguaranteedo contain
the exact result.

The numerical method most frequently used in structuralhaeics is the finite element
method (FEM). Its accuracy is affected by discretisatiod esunding errors and model and
data uncertainty. In this paper we focus on parametric daicey and rounding errors. The
source of parametric uncertainty (sometimes also calléal ulzcertainty) is the lack of precise
data needed for the analysis. In the FEM, parameters dasgtitbe geometry, material, and
loads may be uncertain. Parametric uncertainty may resuit & lack of knowledgegpistemic
uncertaintyor reducible uncertainty e.g. loads are not exactly known, or an inherent varigbili
(aleatory uncertaintyr irreducible uncertaintyin the parameters, e.g. material parameters are
only known to vary within known bounds, cf.l[9].

For a decade or more the interval arithmetic approach has bsed to handle parameter
uncertainty in the application of the FEM to problems in stawal mechanics, e.gl[B] 4,110,
11,[13,14[ 15], to name but a few. Most of these papers cangidecase of affine parametric
dependency. Typically, more advanced models involve potyial or rational parameter de-
pendencies, in which case the coefficients of the systemaedr equations to be solved are
polynomial or rational functions of the parameters.[In [ present an approach to solve such
systems. Therein we employ a general-purpose fixed-p@ration using interval arithmetic
and an efficient method for bounding the range of a multivan@lynomial over a given box
based on the expansion of this polynomial into Bernsteigmparhials [6/1V]. As an example,
we discuss a two-bay two-story frame involving 13 and 37 patars.

The problem that the lengths of the bars of a truss systemraxertain, due to fabrication
errors, is considered in|10]. However, in real-life prohke not only the lengths are uncertain
but also the positions of the nodes are not exactly known.h&best of our knowledge, this
problem has not been considered so far in the literature.

In this paper we present a simple model with uncertain nodatiens, consisting of six
linear truss elements joined at five nodes. As well as uncentade coordinates, the material
values (Young’'s modulus and cross-sectional area) andngddrces are also interval param-
eters. As a consequence of the uncertain node locatiors tl®telement lengths and angles
in the problem are also interval values. With a suitable chaif variable substitution for the
angles appearing in the system matrix, the resulting paramsystem of linear equations is
firstly solved by the aforementioned general-purpose penaenfixed-point iteration. How-
ever, the tightness of the resulting displacement intengahot wholly satisfactory. Therefore,
two interval pruning techniques are applied to compute amdract the interval enclosures
for the element forces and node displacements. These atgeave compared to a tight inner
estimation of the true interval solution obtained by a MddDg&lo simulation.

This paper is organised as follows. The next section caneisa brief introduction to in-
terval arithmetic. The model is then presented in detailant®n 3, along with its parameter
values. The collection of methods used to solve the prohlechyding the iteration method for



parametric systems and two interval pruning techniquedeseribed in Section 4. The numer-
ical results may be found in Section 5 and we conclude withessaggestions for continuation
of this work.

2 INTERVAL ARITHMETIC

Let IR denote the set of the compact, nonempty real intervals. Tiltereetic operation
o € {+,—,-,/} onlR is defined in the following way. Ifi = [a, @], b = [b, b] € IR, then

a+b = [a+ba+bl],

a—b = [a—ba—1,
a-b = [min{ab,ab,ab,ab}, max{ab, ab,ab, ab}],
a/b = [min{a/b, Q/l_), a/b, E/l_)},max{g/b, Q/l_), a/b, E/l_)}], if 0¢&b.

As a consequence of these definitions we obtain the inclusaionicity of the interval arith-
metic operations: I, b; € IR with a; C a andb; C b then it holds that

aq Obl g aob if aq Ob1 is defined

Note that some relations known to be true in thelset.g. the distributive law, are not valid
in IR. Here we have the weaker subdistributive law

a-(b+c) Cab+ac for a,b,c € IR.

By IR" andIR™*™ we denote the set of-vectors andh-by-n matrices with entries ifiR,
respectively.
Further details on arithmetic with intervals may be foun{linl2].

3 THE MODEL

We consider the simple mechanical truss structure comgridre nodes connected by six
linear elements as depicted in Figlte 1; the elements arbenad in circles and the coordinates
of the nodes are also given. Two of the nodes, 1 and 2, are fixedther three are free-moving.
A downward loading force afOkN is separately applied to both nodes 4 and 5.

Upon loading, we wish to compute the displacements of nodBs\8z. us, v, ug, vy, us, vs,
and the resultant normal forces in all six elememts,. .., Ss. Each of these is an interval
guantity since the uncertainty in the input data causesrtaiogy in the solution. We wish to
compute intervals which tightly contain the true rangesalfigs for each of these variables.

The uncertain paramaters are as follows (see also Thble 1):

e The positions of the five nodes of the truss (before loadingyabject to an uncertainty
of +0.005 in both thez- and y-directions. With metres as the coordinate units, this
corresponds to a variation af5mm. Correspondingly, the elements are of uncertain
length (depending upon configuration, they may vary upt6/2mm).

e The product of the elements’ cross-sectional area with theny’s modulus is subject to
an uncertainty oft5%. The nominal value is taken as an IPE 160 steel elemént (
20.1cm?, E = 2.1 % 10%kN/m?). This results inE A := [400995, 443205]. Note that there
is a single, globaF A parameter.
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Figure 1: Mechanical Truss Model with Six Elements

e The loading forces applied to all nodes are subject to anrtaingy of +1kN in both the
x- andy-directions. This applies even to nodes which do not havadihg force applied

(i.e. node 3).
Table 1: Interval Parameters for the Truss Model
Parameter Nominal Value | Uncertainty
Young’s modulusc area EA 422100 kN 421105 kN (+5%)
(l‘l,yl) (0,2) +0.005 m
(z2,92) | (0,0) £0.005 m
Node coordinates (x3,y3) | (2,1) +0.005 m
(x4,y4) | (2,0) +0.005 m
(zs5,95) | (4,0) £0.005 m
F.,, F,, | 0kN, 0 kN +1 kN
Loading forces F.,,F, | 0OkN, =50 kN | £1 kN
F..,F,, | 0OkN, =50 kN | £1 kN

4 METHODOLOGY

Our solution procedure consists of the following stages:

1. Application of a variable substitution to generate thenlsglic system stiffness matrix

appearing in the FEM in terms of the interval parameters.

2. Initial enclosures for the node displacements obtairyeaiplying a parametric solver to

the interval system.




3. Initial enclosures for the element forces computed froesé node displacements.
4. An interval tightening method applied to the elementéstc
5. Aninterval tightening method applied to the node disphaents.

4.1 Finite element method

The usual FEMI]2], 18] proceeds by the assemblage of a singje &ystem of linear equa-
tions. For each structural element in the problem (see E@uranelement stiffness matrig
created, expressed in termswok 0, sin ¢, £ A, andL, the element length.

y
X (X, %) ol

Figure 2: Arrangement of a Single Element Connecting Lefitiand Right-Hand Nodes

Since the node locations are uncertain, the angles of theugelements are also interval
guantities. However, the angles and the element lengthgrdyamplicit interval parameters.
Therefore, by means of the following substitutions, we a@arnange each element matrix so
that it is expressed only in terms of the explicit intervatgraeters, viz. EA and the node
coordinates(z;, y;) and(z,, y..):

Tr — X
L

. Yr — Y1
0 = 1
sin 7 (1)

L= (o =)+ (yr — 0)?

This yields the following element stiffness matrix:

cosf =

ke — FA

(@r—0)>+(yr—y)?)?
(2, — @) (@ — 20)(yr — w1) —(z, — ;) — (@, — ) (yr — w1)
(zr — 1) (yr — W) (yr — u1)? — (2 — ) (yr — 1) —(yr — u1)?
_(:Er _xl)z _(xr _xl)(yr _yl) (xT’ _l‘l)2 (xT’ _xl)(yr _yl)
—(xr — 21)(yr — 1) —(yr —w)? (2 — 1) (yr — W1) (yr — w)?

The global system stiffness matriX is assembled in the usual way. If we were to solve
the resultant system of equations in the conventional éeshie. by substituting each of the
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variables by its literal value (in this case, intervals &ast of floating-point numbers), we would
need to apply a linear system solver (e.g. interval Gausdiamnation [1,12]), using interval
arithmetic where required. However, we will see that in titenval case such an approach is
hopeless. Instead, we must store the system matrix in syorfboin.
It is worth mentioning that alternative element stiffnesstiices can be obtained by the use
of the following alternative transformation:
1—t? 2t

cosf) = ——  sinf =

— 2
e L (2)

wheret = tang. In this case the element stiffness matrix is as follows:

(1—-t)2  2t(1—¢*) —(1—-1t)? =2t(1—1¢?)

__EA | 2t(1 -7 4¢2 —2t(1 — %) —4¢*
L(1+12)? —(1—=2 =2t(1—1t*) (1—t)* 21 —¢t%)
—2t(1 — t?) —4¢? 2t(1 — t2) 4¢*

We shall use the former transformation; the relative megfteach are briefly discussed in
Sectior 5.P.
4.2 Parametric system solution

We now have a system of linear equations for the node displentsu;, v;, i = 3, ..., 5:
Ku=F,

whereK is the global system stiffness matrix assembled from thaet stiffness matrices,
i=1,...,6,u = (u3 vs3 us vs us v5)" is the vector of node displacements afid= (F,, F,,
F,, F,, F., F,)" is the vector of loading forces.

We will now consider the general case of a system of lineaagojs with interval parame-
ters. Suppose we have a linear system

A(p) -z = b(p), (3)

where the coefficients of the x m matrix A(p) and the vectob(p) are functions of, param-
eters varying within given intervals

azg(p) :aij(p17"'7pn>7 bl(p> = bi(p17"'7pn)7 iajzlu"'7m7 (4)
p€lpl=(pdl, .- Ipa))". (5)
The set of solutions to the above system, calledodr@ametric solution seis
X=X (A(p),b(p), [p]) = {zeR™|A(p)-z=>b(p)for somep € [p]} .

The set is compact ifA(p) is nonsingular for every € [p]. For a nonempty bounded set
S C R™, define its interval hull by1S := N{[s] € IR™ | S C [s]}. Itis generally expensive
to obtainY or (1, so instead we seek an interval vecforfor which it is guaranteed that
QO0X D%

We apply a general-purpose self-verified method for boumthe solution set of a paramet-
ric linear system, which does not assume any particulacttret among the parameter depen-
dencies. This method derives from inclusion theory for remametric problems, sele ]16] and
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the references therein. In_16, Theorem 4.8] a straighthotvgeneralisation to linear systems
with linear parameter dependencies is given. The correBpgrtheorems can be modified and
applied to linear systems involving nonlinear parametpedeencies [14, 15]. The following is
a general formulation of the enclosure method for lineatesys involving arbitrary parametric
dependencies.

Theorem 1. Consider a parametric linear system defined by Egs. [3 — 5. ALet R™*™,
[y] € IR™, € R™ be given and defing] € IR™, [C] € IR™*™ by

[z] = O{z(p) = R(b(p) — A(p)7) | p € [pl},
[C] == O{C(p)=1-R-Alp)|pe€ pl}

wherel denotes the identity matrix. Defifg € IR™ by means of the following Gauss-Seidel
iteration

[wi] = A{le] + (O] ([, -, oica)s [y - lym)) i 1< i<

If [v] & [y], thenR and every matrix4(p) with p € [p] are regular, and for every < [p] the
unique solutiort = A~1(p)b(p) of the system defined by EGs[13-5 satisfiesz + [v].

In our computations we have chosgn~ A-'and# = R - b(p), wherep is the midpoint of
[Pl and A = A(p).

The above theorem generalises [16, Theorem 4.8] by reguarsharp enclosure 6f(p) :=
I — R - A(p) for p € [p], instead of using the interval extensi6fi[p]). Examples demonstrat-
ing the application of the generalised inclusion theorem loa found in [[14/ 15]. A detailed
description of this algorithm can be found in[14].

4.3 Initial node displacement intervals

After applying the above parametric solver, we have prelary interval enclosures for the
node displacements. By means of the following formula from EEM [18, p. 98], evaluated
using interval arithmetic,

S; = E—LA(— cosf —sinf cos@ sinf)u;, (6)

whereS; is the resulting normal force (either tension or compragsio element andu; =
(u; v u, v,)7 is the vector of displacements for thidn element’s left- and right-hand nodes,
preliminary interval enclosures for the element forcesalan be obtained.

4.4 Interval tightening (element forces)

At each free-moving node (nodes 3, 4, and 5 in our exampldpraks (element forces and
loading forces) must be in equilibrium, in both theandy-directions. For example, at node 3,
the following must hold:

Sycosby + F,, = Sicosfy+ S;cosls (7)
Sisinb; + F,, = Sysinfy+ S5sinbs (8)



These can be rearranged to give one or more explicit fornfataeach element force. Again
at node 3, we have:

Sycosfy + Sscosb; — F,

Sl -
cos 0,
S4 sin 04 + 55 sin 05 - Fy3
ST = -
sin 6,
Sy cos by — Sscos b + F,
S4 -
cos 6,
Sl sin 01 - 55 sin 05 + Fy3
Sy = -
sin 6,
Sycosby — Sycosby + F,
S5 —
cos b5
Sl sin 91 — 54 sin 94 + Fys
S5 = .
sin 05

We apply the following interval tightening (also sometink@®wn as pruning) technique:

e Using the current values for the element forces, evaluatk ehthe above formulae in
turn, to obtain new interval enclosures for the forces.

e For each element force, the current interval value is ietgexd with the new computed
enclosure(s), yielding a narrower or identical interval.

This procedure is iterated (for all nodes) as desired umtilset of resulting set of intervals
for the element forces do not contract any further.

4.5 Interval tightening (node displacements)

Using [B) instead of the force equilibrium equations, thevabprocedure could simply be
applied in a similar fashion in order to contract the inté&s\ar the node displacements. While
this does indeed achieve a significant contraction of thplaltement intervals, their widths
are still wider than one would like. This reduced effectees is due to the greater number of
interval quantities appearing il (6).

We therefore employ a slightly more sophisticated pruneahnhique. Firstly note that;,
the length of element is related to its normal forcs; by

EA(L; — L)
R
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9)

whereL;, is the starting length of elemeifi.e. before any loading forces are applied).

For this procedure, we take the new, tight enclosures foeldi®ent normal forces obtained
above, and fronf{9) we use interval arithmetic to calculatmterval value for;,i =1, ..., 6.
TheseL; interval values will stay fixed.

Now consider element Assume for the time being that the displacement of itsheftd
node is a known point value, as is the an@jle Given that we know the lengtt,;, to within
certain bounds, what is the set of possible displacemeriteeaight-hand nodéu,., v,) which
will satisfy this length requirement? As illustrated in &ig[3, this set is bounded by two
parallel lines which are perpendicular to the element.



e.
I u
Figure 3: Bounds on the Displacements of a Node Due to Two &tésrof Interval Length

Now consider element, wherei # j, where elements andj share the same right-hand
node. Making the same assumptions about elemeand provided that the two elements are
not parallel, the set of possible displacements which vaitisfy both length requirements is
bounded by the intersection of two such pairs of parall&dirwhich describes a parallelogram
(see Figuré&l3). By taking the smallest bounding box surrognthis parallelogram, we obtain
new bounds fofu,., v,.).

However, the displacements of the left-hand nodes and thkesuof the elements are not
point values, which complicates the issue. We thus purswerdinatorial solution: Let each
of these interval values take either their left- or rightigaint. There ar@® = 64 possible
permutations amongu;,, v;,, 6;, u;,, v;,, 0;}. For each such permutation, we can compute the
parallelogram intersection and its bounding box. We comaphe smallest bounding box con-
tainingall these parallelograms as a new interval enclosurédfamn, ).

Taking each node in turn, the method thus proceeds as fallows

e Take every possible pair of non-parallel elements whichtrae¢éhe node, in turn. For
example, at node 3 we may consider elements 1 and 4, whichthezet followed by
elements 4 and 5 (but not elements 1 and 5, which are paradielthe intersection of
their interval angleg; andd; is non-empty).

e For each such pair, compute an interval enclosure for th@atisment of their common
node, in ther- andy-directions, as above.

e Take the intersections of these new interval(s) with thessurvalues for the displacement
of the node.

Again, this procedure is iterated (for all nodes) as desimatil the set of resulting set of
displacement intervals do not contract any further.
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5 RESULTS

In this section the aforementioned methods are appliedetontbdel described in Section 3.
We aim to compute intervals for the element forces and nogi@atements that are guaranteed
to contain the true solution, which consists of the set oérvdl ranges for these quantities
when each interval parameter is allowed to vary indepemgeiithin its domain. Our solution
intervals should enclose the true solution as tightly asiptes, minimising the overestimation
associated with the well-known dependency problem invalearithmetic, e.g.[112, p. 16-17].

To obtain the initial values for the displacementsu;, : = 3, ..., 5, an existing implementa-
tion of the parametric system solver for thiathematicaenvironment has been useédl[14]. The
other steps have been implemented in C++; apart from the &08atlo method, which is run
by way of comparison to estimate the true interval solutmthie problem, these are interval
methods with interval variables and parameters, usingviatarithmetic in place of floating-
point arithmetic. The computational results are thus guaed, even accounting for rounding
errors. The C++ interval libraryi | i1 b++ [[7] is employed.

5.1 Monte Carlo simulation

We wish to firstly compute a tight inner estimation to the tnterval solution to the problem,
for which the well-known Monte Carlo method is used. Thisn$/alone so as to obtain a close
approximation to the true result, so as to be able to judgeuilaéty of the guaranteed solution
obtained by the other methods.

All starting interval parameters are replaced by point @alwhich are randomly chosen
within their domains, and the point problem is solved, udimg standard FEM. The result
intervals are computed as the interval hulls (see SeEi#not the solutions to the point prob-
lems. Sufficient (herel0°) point problems are run in order to provide a relatively tiginer
estimation to the true interval solution.

The inner estimations for the element forces and node displants obtained by the Monte
Carlo simulation are given in Tallé 4.

5.2 Finite element method

With the variable substitutioll1), the FEM yields a systdnmterval equations. However,
the literal intervals appearing in the system stiffnessixdt” are of sufficient large width that
it is not possible to solve the system using interval Gawssienination with partial pivoting,
e.g. [8, Sect. 7] and [12, p. 157]. A naive application of tH&Fin the interval case will
almost always fail or deliver result intervals that are Hepsly wide.

We note that by using the alternative variable substituff)rihe interval entries of actu-
ally become slightly narrower. However this does not suficcehe system to become solvable.
Also, this transformation is less suitable for the paramoailution, due to the presence of im-
plicit interval parameters for the element lengths (whiepehd on the explicit parameters for
the node coordinates). This causes the result intervalhé&diplacements to be wider, since
this dependency is not taken into account.

5.3 Parametric solution

The parametric solver from Sectibn}4.2 delivers intervatsiie node displacements which
are given as the starting values in Table 3. Applyinlg (6)s¢healues are used to generate
intervals for the element forces, which are given as théistavalues in TablEl2. By themselves,
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Table 2: Results of Interval Tightening on the Element Fsrce

Starting Values | Element Force | Value
S [—45.95638288, 282.90173927]
S [—48.82304461, 198.42523281]
Ss [—250.21554428, —57.41859127]
Sy [—590.63155262, 589.77215288]
Ss [—388.47735525, 622.81537800]
Se [—324.87728856, 113.01160160]
Iteration 1
S [—45.95638288, 282.90173927]
S [—48.82304461, 198.42523281]
Ss [—250.21554428, —57.41859127]
Sy [—94.90232257, 88.58968408]
Ss [104.66035897,119.11859164]
Se [—291.88018818, 90.55655220]
Iteration 2
St [101.85101412, 122.03185725]
S [—48.82304461, 198.42523281]
Ss [—250.21554428, —57.41859127]
Sy [—75.71394558, 82.79650518]
Ss [105.02672841, 118.74332277]
Se [—107.86134409, —92.32798825]
Iteration 5
Sy [105.22056138, 118.56853389]
Sa [54.29348579, 87.12727064]
Ss [—169.90212960, —130.39412338]
Sy [—12.63973687, 7.35954242]
Ss [107.09448776, 116.62533577]
Se [—105.64379816, —94.47996700]
Iteration 10
Sy [105.25687341, 118.53136075]
Sa [56.71628310, 84.77544565]
S3 [—166.94508270, —133.32673491]
Sy [—12.61489164, 7.32583063]
Ss [107.09474113,116.62507624]
Se [—105.62441053, —94.49878139]
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Table 3: Results of Interval Tightening on the Displaceraent

Starting Values

Node Displacement

Value

U3 [—0.00063546, 0.000579938]
U3 [—0.00198524, —0.000768579]
m [—0.00111308, —0.000298213]
N [—0.00206827, —0.000683625]
Us [—0.00170792, —0.000654659]
Us [—0.00768191, —0.00226932]
lteration 1
U3 [—0.00047061, 0.00041743]
U3 [—0.00198524, —0.00076858|
Uy [—0.00086044, —0.00057813]
Uy [—0.00174694, —0.00105952]
Us [—0.00166646, —0.00070149]
Us [—0.00681014, —0.00331722]
Iteration 2
U3 [—0.00030706, 0.00023276]
U3 [—0.00177271, —0.00103279]
m [—0.00086044, —0.00057813]
Uy [—0.00174694, —0.00105952]
Us [—0.00141118, —0.00098210]
Us [—0.00596188, —0.00418864]
Iteration 5
U3 [—0.00030707, 0.00023276]
U3 [—0.00177271, —0.00103279]
m [—0.00086044, —0.00057813]
N [—0.00174694, —0.00105952]
Us [—0.00141061, —0.00098265]
Us [—0.00585002, —0.00429726]
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Table 4: Comparison of Results

Inner Estimation Outer Estimation

(Monte Carlo) (Param. Sol. & Tightening)
Sh [106.96910595, 116.62162466] [105.25687341, 118.53136075]
So [65.13454690, 76.28536251] [56.71628310, 84.77544565]
S3 | [~156.77638723, —143.72365775] | [—166.94508270, —133.32673491]
Sy [—7.73456140, 2.55284234] [—12.61489164, 7.32583063]
Ss [108.31623710, 115.37942086] [107.09474113,116.62507624]
Se | [—104.25310839, —95.91022292] | [—105.62441053, —94.49878139)]
us [—0.00008324, 0.00002555] [—0.00030707,0.00023276]
U3 [—0.00153302, —0.00124259] [—0.00177271, —0.00103279]
Uy [—0.00078219, —0.00064526] [—0.00086044, —0.00057813]
Uy [—0.00153224, —0.00124465] [—0.00174694, —0.00105952]
Us [—0.00130037, —0.00107663] [—0.00141061, —0.00098265]
Us [—0.00547419, —0.00459541] [—0.00585002, —0.00429726]

these result intervals for the displacements are rathes wd thus not completely satisfactory.
The resulting intervals for the element forces are much tole\and are unsatisfactory.

The computation time was 14.2 seconds on a PC with an AMD At 3GHz proces-
sor running theMathematicaenvironment. It should be noted that such a parametricisolut
rapidly becomes very time-consuming for larger systems.

5.4 Interval tightening (element forces)

The results of applying the interval tightening procedi8edtior[4.}) to the element forces
obtained above are given in Talle 2. The intervals convexgilly in the first couple of itera-
tions; 10 iterations suffice to achieve convergence to 8ndagplaces, for which the computa-
tion time is negligible.

The final intervals for the element forces are given in Tabl€dmpared to the inner esti-
mates obtained from the Monte Carlo method, we see that thevais forS;, S5, andSg are
tight. Those forS,, Ss, and.S, are not quite so tight, but still acceptable.

5.5 Interval tightening (node displacements)

The results of applying the interval tightening proced®edtior4.b) to the node displace-
ments obtained by the parametric solution are given in Tdblélere, 5 iterations suffice to
achieve convergence to 8 decimal places. Again, the corputame is negligible.

By comparing with the inner estimates from the Monte Carldhoé (see TablgEl4), we see
that the interval enclosures for the node displacementalbod a similar quality, about twice
the width of the true solution. This is a noticable improvetnan the values obtained from the
parametric solver alone.

6 CONCLUSIONS

We have considered a structural truss model for which the fazhtions, as well as all other
parameters, are uncertain. We have performed a suitab&blasubstitution in order to apply
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a parametric solver and have devised interval tighteningguures for both the element forces
and node displacements, which deliver a significant imprem to the results. Through the
use of interval arithmetic, the result intervals are guegad to contain the true solution. The
remaining overestimation is due to some lingering occugsraf the dependency problem, at
least in the current formulation.

Initial investigations have shown that it may be possiblentprove the results obtained by
the parametric solver, by augmenting the system of equatoi the system stiffness matix
with additional equations and variables for the elemertdsi{®), adding extra dependencies to
the system. However, the resultant impact on the tightepiogedure is minimal.

In future, we wish to explore how effectively the method mayapplied to truss structures
with a greater number of elements and nodes. In such casesyitbm necessary to exploit
monotonicity arguments so that the parametric solutiorarama viable approach.
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