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Abstract: This tutorial article gives an introduction into the expansion of a multivariate polynomial into Bernstein polynomials and the use of this expansion for finding tight bounds for the range of the polynomial over a given box. Applications to robust stability problems, to the enclosure of the solu​tion set of systems of polynomial inequalities and equations, respectively, as well as to the solution of constrained global optimization problems are presented. 
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1. Introduction

Many problems in pure and applied mathematics and their applications can be reduced to the problem of find​ing bounds for the range of a given function over a pre​scribed domain. Often this domain is an axisparallel box X in Rn. E.g., in robust control and computer aided geo​metric design it is often required to check whether the determinant of a matrix with entries depending on pa​rameters varying in intervals is of like sign for all pa​rameter combinations. If the given function is a multi​variate polynomial, p say, the expansion of p into Bern​stein polynomials provides tight bounds on its range. The aim of this tutorial article is to give an introduction into this expansion and to present various applications of these bounds.

The organization of this article is as follows: In the next section we recall the Bernstein expansion. In Section 3 applications to some robust control problems are pre​sented. Bounding the solution sets of systems of polyno​mial inequalities and equations are treated in Sections 4 and 5, respectively. Applications to the solution of con​strained global optimization  problems are given in Sec​tion 6. Directions for further research are outlined in the last section. To keep the presentation as simple as possi​ble, we focus on the applications and refer to papers, where the underlying theory can be found.  

2. The Bernstein expansion

For the sake of simplicity, we explain the Bernstein ex​pansion in the univariate case and only sketch the exten​sion to the multivariate case. Details can be found in [1] and [2].

Let a polynomial p with real coefficients be given
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We want to know the range of p over an interval [a,b], i.e.,


 p([a,b]) = (p(x) ( x( [a,b](.

Without loss of generality we may assume that [a,b] is the unit interval U = [0,1]. Now we represent  p as a linear combination of the  Bernstein polynomials of the same degree 
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i.e.,

p(x) 
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Here the coefficients bi of this expansion, the so-called Bernstein coefficients, are  weighted sums of the coeffi​cients of p
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, i = 0, … , l.   
    (4)

These coefficients can be computed economically by using a difference table method similar to the de Castel​jau algorithm in computer aided geometric design [3]. Then the computation of the binomial coefficients and of the products involved in the representation (4) is avoided.

From the Bernstein coefficients we immediately obtain bounds for the range of p over U (range enclosing prop​erty) : 
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We can similarly formulate this property if we introduce the control points 
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 , i = 0, …, l,  as the convex hull property
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where convS  denotes the convex hull of S, i.e., the smallest convex set containing the set  S.  Figure 1 illus​trates this property.
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Fig. 1 The curve of a polynomial of fifth degree (bold) and the convex hull (shaded) of its control points (marked by squares)

These bounds can be improved if we bisect U into the two intervals [0,0.5] and [0.5,1] and apply the procedure over the two subintervals. Then p(U) is contained in the union of the convex hulls of the control points on both subintervals, cf. Fig. 2.

The Bernstein coefficients of p on  [0,0.5] can be calcu​lated from those on U by forming recursively the arith​metic mean – again similar to the de Casteljau algorithm. As intermediate results of this computation we obtain the Bernstein coefficients on the neighbouring subinterval [0.5,1] – without any additional calculations, cf. [2]. If we proceed in this way, then we get from property (5) sequences of lower and upper bounds which converge quadratically  to min p(U) and max p(U), respec​tively, cf. [4].

A salient feature of the Bernstein expansion is that we obtain the Bernstein coefficients 
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Fig. 2 Improvement of the enclosure by subdivision; the convex hulls on the subintervals are shaded in dark

p simply  by forming differences of its Bernstein coeffi​cients:
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In the n-variate case, the Bernstein polynomials are de​fined as the product of the univariate Bernstein polyno​mials
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We can keep all the notation and relations introduced in the univariate case if we interpret now all indices as multiindices 
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, i.e., as vectors, where the n components are nonnegative integers. The vectors 0 and 1 denote the multiindices with all components equal to 0 and 1, respectively. Comparisons between multiindi​ces are defined entrywise. Also, the division of multiin​dices i and l  in (6) is used componentwise



[image: image19.wmf]T

l

i

l

i

l

i

n

n

)

,

...

,

(

:

1

1

=

.

For x
[image: image20.wmf]Î

Rn its multipowers are


xi := 
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For the n-fold summation we use the notation
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and define the generalized binomial coefficients by
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The set U is now the unit box of dimension n, i.e., 


U = [0,1]n.

Note that the Bernstein coefficients now form an n-di​mensional array, called a patch.  The n-variate polyno​mial p of degree 
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can again be repre​sented in the form (1), the Bernstein polynomials are given by (2), and the relations (3) – (6) generalize to the multivari​ate case. Also in extension of (7), we obtain the Bernstein coeffi​cients of the partial derivatives of p by forming the dif​ferences of the Bernstein coefficients of p in the di​rection which corresponds to the respective co​ordinate direction.

For bounds for the range of bivariate polynomials over triangles obtained by Bernstein expansion see [5].

3. Applications to robust control

In control theory, the question whether a given polyno​mial with coefficients depending on parameters is D-stable is of great importance. Here a polynomial is termed D-stable if all its zeros lie inside the prescribed subset D of the complex plane. Of practical relevance are especially the cases in which D is the open left half of the complex plane (Hurwitz or asymptotic stability), the open unit disk (Schur stability), or a sector lying symmetric to the real axis with vertex at the origin (damping). From the literature, e.g., [6-7],  many results are known in the case in which the coefficients of the given polynomial depend affinely or multiaffinely on parameters. But these are the simplest instances appearing in practice. We are here concerned with the far more general case of poly​nomial parameter dependency:

Let a box
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and a univariate polynomial  p(x,q)

p(x,q) = 
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be given with  coefficients depending  polynomially on parameters  
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The parameter vector q is varying inside Q. To avoid dropping in degree, we assume that 

a0(q) > 0 for all q 
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The question arises whether the polynomials  p(q) are D-stable for all q ( Q  (robust stability).

Bernstein expansion is applicable to the solution of this problem if we use algebraic stability criteria: In the case of Hurwitz stability, we have to test the so-called Hur​witz determinant for positivity over Q,  see, e.g., Sect. 4.3 in [6].

This determinant is in fact again a polynomial in the variables 
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 and by the range enclosing property (5) it is sufficient that all its Bernstein coefficients are positive. So, if n (the number of parameters) and m (the degree of p) are not too large, robust stability can be checked efficiently. For more complex control systems the (symbolic) computation of the Hurwitz determinant is prohibitive even with current computing power. An al​ternative was presented in [2], which uses the following basic fact, called the Zero-Exclusion-Theorem:  Given a stable member p(q*) of the family, we have to check whether a zero of a member p(q) crosses the imaginary axis in order to test the entire family for stability. There​fore, we have to investigate the so-called value set
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We split the polynomial p(jω,q) into its even and odd parts 
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 for the even part and μ =  
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 for the odd part, [  ] denoting the integer part. By extending bounds known from the literature on the positive zeros of a polynomial with constant coeffi​cients to the case in which the coefficients of the poly​nomial are depending on parameters, cf. [8],  we obtain an interval on the imaginary axis on which zero crossing is only possible. We recast the zero crossing problem to the problem of testing whether the set


[image: image38.wmf]{

}

U

x

x

p

x

p

o

e

Î

:

)

(

),

(

(

, dimU = n + 1,

contains the origin. By forming pairs of the respective Bernstein coefficients of pe and po , we obtain a set of points in the complex plane and compute its convex hull which can be accomplished using  O(νlogν) operations, where ν is the number of points. Then we check whether the origin is contained in this convex hull. If the origin is outside, the family (8) is robustly stable. Otherwise, an inclusion test described in [2] is performed. If it fails, i.e., it can not be verified that the origin is in the value set, the underlying box Q is bisected to obtain two new patches on which we proceed as before. For details see [2].

A salient feature of this approach is that the value set (9) can be visualized (cf. the following example). This is an advantage for the designer since often it can be recog​nized by inspection by eye whether the origin is con​tained in the value set which means that the polynomial family contains an instable member.

As Example 1 we consider the characteristic polynomial associated with the control of the engine of the Fiat Dedra; for details of the control problem the reader is referred to Chapter 3 in [7]. This characteristic polyno​mial is of seventh degree  (m = 7)  and its coefficients depend quadratically on seven parameters (n = 7). In [7] these coefficients are given explicitly filling two pages. In about eight seconds on a HP workstation 9000/755, the algorithm produces the approximation of the value set displayed in Fig. 3. The origin is contained in the small black hole on the right side outside the value set ascer​taining that the polynomial family is robustly stable.
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Fig. 3  Approximation of a part of the value set in  the Fiat Dedra example

A further example from practice, the track guided Daim​ler Benz city bus O305, is discussed in [2]. 

The above procedure is extended in [8] to polynomials with complex coefficients. Damping can be reduced to this case. Robust Schur stability is similarly treated in [9].

4. Enclosure of the solution set of a system of strict polynomial inequalities

We consider a system of strict polynomial inequalities, i.e.,  

 
 pi(x) ( 0 , i = 1, ... ,k, x ( X,
             (10)

where the n-variate polynomials pi and the n-dimensional box X are given. Wanted is the solution set Σ of the sys​tem​, i.e., the set of all vectors x satisfying (10).

A typical example is the problem of determining the D-stability region of a family of polynomials (8) in a given parameter box Q, i.e., the set
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According to the stability criteria for Hurwitz and Schur stability, this problem can be for​mulated as that of solv​ing one and three, respectively, polynomial inequalities. A number of other control problems, such as static output feedback stabilization and simultaneous stabilization, can also be reduced to the solution of systems of polynomial inequalities, for details see [10]. In practice, stability is but one of many re​quirements of closed-loop control systems. Given a nominal plant parameter vector, a nominal controller is usually designed to guarantee closed-loop stability and to meet other specification constraints such as disturbance rejection, time response overshoot, settling time, refer​ence input tracking etc. Often these performance specifi​cations can also be for​mulated in the frequency domain as polynomial ine​qualities. If the parameter vector q is known only to belong to a box Q, a natural question is to ask for which q 
[image: image41.wmf]Q
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the nominal controller meets all design specifica​tions.

Only in the simplest cases are we able to describe the solution set Σ exactly. In general, we instead seek a good approximation to it. We obtain an inner approximation of Σ, denoted by Σi, by the union of subboxes of Q on which all polynomials pi are positive. Similarly, an inner ap​proximation of the exterior of Σ in Q, denoted by Σe, is given by the union of subboxes of Q with the property that on each there is a nonpositive polynomial pi*. The boundary 
[image: image42.wmf]Σ
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of  Σ is approximated by the union of subboxes of Q on which all polynomials pi attain positive values, but on which at least one also attains nonpositive values. This set is denoted by Σb, cf. Fig. 4.
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Fig. 4   The different approximations of 
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and  Σ
We check the (non)positivity of a polynomial by the sign of its Bernstein coefficients using the range enclosing property (5), e.g., the set Σi  consists of all subboxes on which the Bernstein coefficients of all polynomials pi are positive, for details see [11].

Alternatively, the solution set Σ can be determined by quantifier elimination, cf. [10] and [12] and the refe-rences therein. It seems, however, that  Bernstein expan​sion can handle more complex problems and that it re​quires less computing time when both methods are appli​cable.
Example 2: The following system of polynomial ine​qualities for the three positive parameters A,B,D results from the application of stability criteria [10]:

AB² - D²  >  0

-AB + A + D² - D – 1   >  0

AB – AD – 2A + D³ + 4D² + 4D  >  0

AB³ - AB²D – 4AB² + 2ABD + 4AB + 2BD³ + 5BD² + 2BD – D³ - 4D² - 4D  >  0

AB – 2A – BD² - 4BD – 4B + 2D² + 3D – 2 >  0

with A ( [100, 120],  B ( [0, 2], D ( [10, 20]. The sym​bolic conputation package QEPCAD needs about two hours of CPU time (on a Sun Workstation) to solve the existence problem, i.e., to show that there is a solution of the above system of inequalities [10]. In only 1.3 s (on a PC equipped with a  Pentium 133) Bernstein expansion provides an inner approximation of the solution set. In order to visualize this set at least in part we choose A = 110. Fig. 5 shows for this parameter value an inner ap​proximations of the set of feasible (white region) and unfeasible (grey region) parameters B and D.
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Fig. 5  Set of feasible values for the parameters B and D for A = 110 in Example 2

Compared to symbolic methods such as quantifier elimi​nation, Bernstein expansion seems to be not so widely applicable:

•  Bernstein expansion requires pre-determined bounds on the parameter range. However, the designer often has a region of special interest.    

•  Symbolic methods provide an explicit description of the solution set  Σ which is complicated in general. From the point of view of the designer, the description of the entire solution set is often not necessary. What the de​signer really wants is a good inner approximation of the solution set or even a large box inside this set, which is precisely what Bernstein expansion provides.

•  By the method described in this section, only strict inequalities can be handled. The methods which are presented in Section 5 allow also weak inequalities.

5. Enclosure of the solution set of a system of  poly​nomial equations

In this section we consider a system of equations

          pi(x) = 0 , i = 1, ... ,k, x ( Q,
                             (11)

where again the pi are polynomials in n variables and Q is an n-dimensional box. Such systems appear in a great variety of applications, e.g., in geometric intersection computations, chemical equilibrium problems, combus​tion, and kinematics, to name only a few.

Again we test the sign of the polynomials pi on the sub​boxes obtained by subdivision by using Bernstein expan​sion. Then we can discard subboxes which cannot con​tain a solution. To the remaining subboxes we apply the existence test by Carlo Miranda, e.g., [13]. This test is a generalization of the fact that if a univariate continuous function  f  has a sign change at the endpoints of an inter​val then this interval contains a zero of  f . In this way we can verify that a certain subbox contains a solution, for details see [14].

As Example 3, we consider a problem from [15], to find the critical points, i.e. the points, where the partial de​rivatives both in x- and y-direction vanish, of a planar algebraic curve defined by  f(x,y) = 0, where f is a poly​nomial of degree (4,4). This problem has nine solutions. All these solutions were found with a tolerance of 10-8, 2245 boxes have to be processed and the Miranda test has to be performed on 20 subboxes. The computing time on a PC equipped with a 450MHz Pentium III processor was less 0.3 s.

6. Application to constrained global optimization

A constrained global optimization problem is a problem of the following kind  
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where the set M of the feasible solutions is given by inequality and equality constraints
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Here D is a subset of Rn, X is a box in D, and f, gi, hj are real-valued functions defined on D.

Such problems arise, e.g., in chemical process engineer​ing at many places, viz. in

•  pooling and blending,

•  multicomponent separation,

•  phase stability analysis, 

•  parameter estimation.

Here it is often not sufficient to compute only local minima but it must be ascertained that the global mini​mum is found.                   

Constrained global optimiza​tion problems stemming from practical applications are often very complex. Lar​ger problems can have over a hundred variables and constraints. Methods which are based on traditional ap​proaches of nonlinear optimization often guarantee only convergence to a local minimum and the solution to which they tend is depending on the starting point of the iteration process. As an example, we mention the estima​tion of parameters in vapor-liquid equilibrium models.  Even for simple models, such as the Wilson equation, multiple local minima can occur in parameter estimation. It was demonstrated in [16]  that for some data sets, pa​rameter values in the DECHEMA data collection [17] correspond to local but not to global minima. 

We use an approach which is based on the use of convex lower bound functions. We replace problem (12) by the following, called a relaxation,
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            (13)

where M ( N and f(x) (  f(x) hold. The solution of (13) provides a lower bound to the solution of the original problem (12). Of course, problem (13) should be easier to be solved than problem (12).

During the last years, affine and convex relaxations were used in a branch and bound framework to solve special global optimization problems and combinatorial optimi​zation problems.

 In our present work we concentrate  on constraint global optimization problems in which the objective function f and the functions describing the constraints are all multi​variate polynomials. Then we can use the Bernstein ex​pansion to determine a lower bound function for the polynomial under consideration. In the simplest case this is a constant function provided by the minimum Bern​stein coefficient, cf. (5). From the convex hull property (6) we obtain convex lower bound functions with an increasing order of complexity. In the univariate case, an affine lower bound function is provided by the straight line through a control point with minimum Bernstein coefficient. The slope of the straight line is determined by the smallest absolute value of the slopes between this exposed control point and the remaining control points, cf. Fig. 6.

In the multivariate case, we obtain an affine lower bound function as the solution of a linear programming prob​lem. Of course, we can take additional facets and, as an extreme, the entire lower part of the convex hull to obtain convex lower bound functions which approximate the given polynomial more tightly at the expense of higher computational effort. Details can be found in [18]. 

We have integrated these lower bound functions into a branch  and bound framework: During the branching process the optimization problem is successively parti​tioned into subproblems by bisecting X in a  coordinate direction. For the subproblems feasible solutions are calculated by a local optimization algorithm and lower bounds for the global minimum value are computed. If 
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Fig. 6  The polynomial from Fig. 1 with an affine lower bound function

the lower bound of a subproblem is greater than the minimal function value at the previously calculated fea​sible points, then this subproblem cannot contain a global minimum point and is discarded. To discard boxes we can alternatively use the similarly upper relaxed problem to find  upper bounds for the global minimum value on the subproblem under consideration.

We note that if we work with affine lower bound func​tions then the relaxed problem (13) is a linear program​ming problem which can be solved by standard methods.

As Example 4 we consider the following minimization problem. In the design of a speed reducer for small air​craft engines, a primary concern is the minimization of its weight. In [19] this problem is formulated as the problem to minimize the polynomial
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under eleven constraints which can be rewritten as poly​nomial ones; also upper and lower bounds on the seven variables are given, where the difference between the two bounds ranges from 0.1 to 1.0. We have run our branch and bound algorithm (which is not at all optimized) with the simple choice of constant bound functions to solve this problem. In nearly two minutes (on the same PC as in Ex. 3) the global minimum value f* = 2994  was com​puted to four significant figures. Here over 40000 sub​problems have to be processed.

The use of constant bound functions is crude and requires many subproblems to be processed, but each can be computed extremely quickly. This may be most applica​ble for problems with strongly nonlinear polynomials. With affine bound functions, the branch and bound algo​rithm terminates with many fewer subproblems.  However, the computation is not so cheap and can in​volve the solution of numerous linear programming problems with hundreds of constraints for each subprob​lem. So this approach may be best suited to problems with many multiaffine constraints.  

7. Conclusions

Our future work will be directed to the following prob​lems:

•  Reducing storage requirements: A serious drawback of using Bernstein expansion is its need of computing time and memory which grow exponentially with the number of variables. Therefore, the approach is presently re​stricted to problems up to about ten parameters.

•  All rounding errors appearing in the calculation should be controlled so that the result can be guaranteed also in the presence of  rounding errors. This goal can be achieved by using interval arithmetic, see, e.g., [13] and [20]. As a side effect, also errors in the input data of the problem can be covered.

•  Concerning our present work on constrained global optimization,  problems involving arbitrary but suffi​ciently smooth functions will be attacked. This will be ac​complished by using Taylor expansion of the function under consideration. For the Taylor polynomial a convex lower bound function can be constructed as explained in Section 6. By using interval arithmetic, the error repre​sented by the remainder term can be enclosed into an interval. If we subtract this interval from the lower bound function we obtain an underestimating function for the original function. Finally, methods from interval con​strained solving, e.g., [21], will be applied to prune the search space early in the solution process.
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