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Totally nonnegative matrices, i.e., matrices having all their minors
nonnegative, and matrix intervals with respect to the checkerboard
ordering are considered. It is proven that if the two bound
matrices of such a matrix interval are nonsingular and totally
nonnegative (and in addition all their zero minors are identical)
then all matrices from this interval are also nonsingular and totally
nonnegative (with identical zero minors).
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0. Introduction

A real matrix is called totally nonnegative and totally positive if all its minors are nonnegative and
positive, respectively. Such matrices arise in a variety of ways in mathematics and its applications. For
background information the reader is referred to the recently published monographs [4,13]. In this
paper we solve the conjecture posed by the second author in this journal in 1982 [5], see also [4, Sec-
tion 3.2] and [13, Section 3.2]. This conjecture concerns the checkerboard ordering which is obtained
from the usual entry-wise ordering in the set of the square real matrices of fixed order by reversing
the inequality sign for each entry in a checkerboard fashion. The conjecture states that if the two
bound matrices of an interval with respect to this ordering are nonsingular and totally nonnegative
then all matrices lying between the two bound matrices are nonsingular and totally nonnegative, too.
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This question has been solved for some subclasses of the totally nonnegative matrices, viz. the totally
positive matrices and the nonsingular tridiagonal totally nonnegative matrices [5] and for the almost
totally positive matrices [7], a class of matrices between the nonsingular totally nonnegative and the
totally positive matrices. A result on the case that more than two vertex matrices of the matrix in-
terval are involved was given in [6]. In the past, some attempts have been made to solve the general
question but the conjecture remained unsettled during the last three decades. We also solve here
a related problem, viz. whether an identical zero–nonzero pattern of the minors of the two bound
matrices stays unchanged through such a matrix interval.

The organization of our paper is as follows. In Section 1 we introduce our notation and give
some auxiliary results which we use in the subsequent sections. In Section 2 we recall from [10]
the Cauchon Algorithm, specified for the case of square matrices, on which our proofs heavily rely. In
Section 3 we present the proofs of our main results.

1. Notation and auxiliary results

1.1. Notation

We now introduce the notation used in our paper. For κ,n we denote by Q κ,n the set of all
strictly increasing sequences of κ integers chosen from {1,2, . . . ,n}. For α = (α1,α2, . . . ,ακ) ∈ Q κ,n

the dispersion of α is d(α) = ακ − α1 − κ + 1. Let A be a real n × n matrix. For α = (α1,α2, . . . ,ακ),
β = (β1, β2, . . . , βκ ) ∈ Q κ,n , we denote by A[α | β] the κ × κ submatrix of A contained in the rows
indexed by α1,α2, . . . ,ακ and columns indexed by β1, β2, . . . , βκ . We suppress the brackets when
we enumerate the indices explicitly. We set det A[α | β] = 1 if α or β is not strictly increasing. If
d(α) = d(β) = 0 we call the minor det A[α | β] contiguous. A matrix A is called totally positive (abbre-
viated TP henceforth) and totally nonnegative (abbreviated TN) if det A[α | β] > 0 and det A[α | β] � 0,
respectively, for all α,β ∈ Q κ,n , κ = 1,2, . . . ,n. If a totally nonnegative matrix is also nonsingular, we
write NsTN.

We endow Rn,n , the set of the real n × n matrices, with two partial orderings: Firstly, with the
usual entry-wise ordering (A = (akj), B = (bkj) ∈ Rn,n)

A � B :⇔ akj � bkj, k, j = 1, . . . ,n.

Secondly, with the checkerboard ordering, which is defined as follows. Let � := diag(1,−1, . . . ,

(−1)n+1) and A∗ := �A�.
Then we define

A �∗ B :⇔ A∗ � B∗.

1.2. Auxiliary results

In the sequel we will often make use of the following special case of Sylvester’s Identity, see, e.g.,
[4, pp. 29–30] or [13, p. 3].

Lemma 1.1 (Sylvester’s Identity). Partition A ∈ Rn,n, n � 3, as follows:

A =
( c A12 d

A21 A22 A23
e A32 f

)
,

where A22 ∈ Rn−2,n−2 and c,d, e, f are scalars. Define the submatrices

C :=
(

c A12
A21 A22

)
, D :=

(
A12 d
A22 A23

)
,

E :=
(

A21 A22
e A32

)
, F :=

(
A22 A23
A32 f

)
.
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Fig. 1. Example of a 4 × 4 Cauchon diagram.

Then if det A22 �= 0

det A = det C det F − det D det E

det A22
.

Lemma 1.2 (Shadow property). (See [4, Corollary 7.2.11] or [13, Section 1.3].) Suppose that A ∈ Rn,n is NsTN
and that A[α | β] is a p × p submatrix with rank A[α | β] < p. If A[α | β] is contiguous, then one of

A[α1, . . . ,αp, . . . ,n | 1, . . . , β1, . . . , βp], A[1, . . . ,α1, . . . ,αp | β1, . . . , βp, . . . ,n]
has rank equal to that of A[α | β]. In particular, it is the one to the side of the diagonal of A on which more
entries of A[α | β] lie.

Lemma 1.3. (E.g. [13, Theorem 1.13].) All principal minors of an NsTN matrix are positive.

2. Cauchon Algorithm

In this section we first recall from [8,10] the definition of a Cauchon diagram and of the Cauchon
Algorithm.2

2.1. Cauchon diagrams

Definition 2.1. An n × n Cauchon diagram C is an n × n grid consisting of n2 squares colored black and
white, where each black square has the property that either every square to its left (in the same row)
or every square above it (in the same column) is black.

We denote by Cn the set of the n × n Cauchon diagrams. We fix positions in a Cauchon diagram
in the following way: For C ∈ Cn and i, j ∈ {1, . . . ,n}, (i, j) ∈ C if the square in row i and column j
is black. Here we use the usual matrix notation for the (i, j) position in a Cauchon diagram, i.e., the
square in (1, 1) position of the Cauchon diagram is in its top left corner. For instance, for the Cauchon
diagram C of Fig. 1, we have (2,3) /∈ C , whereas (3,2) ∈ C .

Definition 2.2. Let A ∈ Rn,n and let C ∈ Cn . We say that A is a Cauchon matrix associated with the
Cauchon diagram C if for all (i, j), i, j ∈ {1, . . . ,n}, we have aij = 0 if and only if (i, j) ∈ C . If A is a
Cauchon matrix associated with an unspecified Cauchon diagram, we just say that A is a Cauchon
matrix.

In passing, we note that every TN matrix is a Cauchon matrix [10, Lemma 2.3].

2 This algorithm is called in [8] the deleting derivations algorithm (as the inverse of the restoration algorithm) and in [10]
the Cauchon reduction algorithm.
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2.2. Cauchon Algorithm

In order to formulate the Cauchon Algorithm we need the following notation.
We denote by � the lexicographic order on N2, i.e., (g,h) � (i, j) :⇔ (g < i) or (g = i and h � j).
Set E◦ := {1, . . . ,n}2 \ {(1,1)}, E := E◦ ∪ {(n + 1,2)}.
Let (s, t) ∈ E◦ . Then (s, t)+ := min{(i, j) ∈ E | (s, t) � (i, j), (s, t) �= (i, j)}.

Algorithm 2.3. Let A ∈ Rn,n . As r runs in decreasing order over the set E , we define matrices A(r) =
(a(r)

i j ) ∈ Rn,n as follows.

1. Set A(n+1,2) := A.
2. For r = (s, t) ∈ E◦ define the matrix A(r) = (a(r)

i j ) as follows.

(a) If a(r+)
st = 0 then put A(r) := A(r+) .

(b) If a(r+)
st �= 0 then put

a(r)
i j :=

⎧⎪⎨
⎪⎩

a(r+)
i j − a(r+)

it a(r+)
sj

a(r+)
st

for i < s and j < t,

a(r+)
i j otherwise.

3. Set Ã := A(1,2) 3; Ã is called the matrix obtained from A (by the Cauchon Algorithm).

We conclude this subsection with some results on the application of the Cauchon Algorithm to TN
matrices.

Theorem 2.4. (See [8, Theorem B4], [10, Theorem 2.6].) Let A ∈ Rn,n. Then the following statements hold true.

(i) If A is TN and 2 � s, then for all (s, t) ∈ E, A(s,t) is an (entry-wise) nonnegative Cauchon matrix and
A(s,t)[1, . . . , s − 1 | 1, . . . ,n] is TN.

(ii) A is TN if and only if Ã is an (entry-wise) nonnegative Cauchon matrix.

In [2] we further study the Cauchon Algorithm and present new determinantal tests for total non-
negativity, new characterizations of some subclasses of the totally nonnegative matrices and shorter
proofs for some classes of matrices for being (nonsingular and) totally nonnegative.

2.3. TN cells

For Rn,n , fix a set Z of minors. The TN cell corresponding to the set Z is the set of the n-by-n TN
matrices for which all their zero minors are just the ones from Z . In [10] it is proved that Algo-
rithm 2.3 provides a bijection between the nonempty TN cells of Rn,n and Cn . The following theorem
gives more details about this bijection.

Theorem 2.5. (See [10, Theorem 2.7].)

(i) Let A, B ∈ Rn,n be TN. Then A, B belong to the same TN cell if and only if Ã, B̃ are associated with the same
Cauchon diagram. Therefore, the nonempty TN cells in Rn,n are parameterized by the Cauchon diagrams.

(ii) Let A ∈ Rn,n. Then A is contained in the TN cell associated with C ∈ Cn if and only if ãi j = 0 if (i, j) ∈ C
and ãi j > 0 if (i, j) /∈ C.

3 Note that A(k,1) = A(k,2) , k = 1, . . . ,n − 1, and A(2,2) = A(1,2) so that the algorithm could already be terminated when A(2,2)

is computed.
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We recall from [10] the definition of a lacunary sequence.

Definition 2.6. Let C ∈ Cn . We say that a sequence ((ik, jk), k = 0,1, . . . , t) which is strictly increasing
in both arguments is a lacunary sequence with respect to C if the following conditions hold:

1. (ik, jk) /∈ C , k = 1, . . . , t;
2. (i, j) ∈ C for it < i � n and jt < j � n;
3. let s ∈ {1, . . . , t − 1}. Then (i, j) ∈ C if

(a) either for all (i, j), is < i < is+1 and js < j, or for all (i, j), is < i < is+1 and j0 � j < js+1
and
(b) either for all (i, j), is < i and js < j < js+1 or for all (i, j), i < is+1, and js < j < js+1.

A lacunary sequence with respect to the Cauchon diagram presented in Fig. 1 is the sequence
((1,1), (2,3), (4,4)).

In [10, Section 3] an algorithm is presented which constructs for a given Cauchon diagram C and
any square of C a lacunary sequence (with respect to C ) starting at this square.

Theorem 2.7. (See [10, Theorem 4.4].) Let A ∈ Rn,n and C ∈ Cn. Then the following two statements are equiv-
alent:

(i) The matrix A is TN and belongs to the TN cell associated with C .
(ii) For each (i, j), i, j ∈ {1, . . . ,n}, fix a lacunary sequence (with respect to C ) ((ik, jk), k = 0, . . . , t) starting

at (i, j), i.e., (i0, j0) = (i, j). Then

det A[i0, i1, . . . , it | j0, j1, . . . , jt] =
{

0 if (i, j) ∈ C,

> 0 if (i, j) /∈ C .

Note that this test involves only n2 minors to check whether a given matrix belongs to a specified
TN cell.

In the next section we will make use of the following proposition.

Proposition 2.8. Let A ∈ Rn,n be a TN matrix. Then A is nonsingular if and only if ãii > 0, i = 1, . . . ,n.

Proof. Let C be the Cauchon diagram associated with A. Assume first that ãi0,i0 = 0 and ãii > 0,
i = i0 + 1, . . . ,n.

Consider the lacunary sequence (with respect to C ) ((i, i), i = i0, i0 + 1, . . . ,n). Then by Theo-
rem 2.7 it follows by (i0, i0) ∈ C that det A[i0, . . . ,n] = 0, contradicting Lemma 1.3.

Conversely, assume that ãii > 0, i = 1, . . . ,n. Then the sequence ((i, i), i = 1, . . . ,n) is a lacunary
sequence and by Theorem 2.7 it follows that det A[1, . . . ,n] > 0 since (1,1) /∈ C . �
Remark 2.9. Since a(s+1,2)

ss = ãss , s = 1, . . . ,n, it follows from Proposition 2.8 that the intermediate
matrices A(s+1,2) do not contain a zero column. This property will enable us in the next subsection
to apply Lemma 1.2 to the matrices A(s+1,2) .

2.4. Representation of the intermediate matrices

If A ∈ Rn,n is TP, then the entries ãkj of the matrix Ã obtained from A by the Cauchon Algorithm
can be represented as (k, j = 1, . . . ,n)

ãkj = det A[k, . . . ,k + w | j, . . . , j + w]
det[k + 1, . . . ,k + w | j + 1, . . . , j + w] , (1)

where w := min{n − k,n − j}, i.e., as ratios of contiguous minors, see [10, p. 7]. If A is NsTN, then
some of the minors involved in this representation may be equal to zero. In this subsection we show
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that also in this case the entries of Ã can be represented as ratios of contiguous minors (with possibly
different w).

Proposition 2.10. Let A ∈ Rn,n be NsTN. Then the entries ãkj of the matrix Ã can be represented as (k, j =
1, . . . ,n)

ãkj = det A[k, . . . ,k + p | j, . . . , j + p]
det A[k + 1, . . . ,k + p | j + 1, . . . , j + p] , (2)

with a suitable 0 � p � n − k, if j � k and 0 � p � n − j, if k < j.
We call p the order of the representation (2).

Proof. By step 2 of Algorithm 2.3 we have

ãnj = anj, j = 1, . . . ,n, and ãin = ain, i = 1, . . . ,n, (3)

so that we can assume that k, j < n.
To simplify notation, we will write |[α | β]| to denote det A[α | β].
We will show by decreasing induction on k = n − 1, . . . ,2 that the following two statements hold

for each ãkj .

(i) The entry ãkj can be represented in the form (2) of order p.
(ii) The entries ãk, j+1 for j < k and ãk−1, j for 1 < k < j can be represented in the form (2) of order p,

too.

Any change in the order of the representation can be caused only by zero entries in the intermedi-

ate matrices, see step 2 in Algorithm 2.3. Consider j < k and ãk+1, j = a(r+)

k+1, j = 0 with r = (k + 1, j + 2)

while 0 < ãk+1, j+1 = a(r+)

k+1, j+1. Then we have by Theorem 2.4(ii) 0 < ãk+1, j+2 = a(r+)

k+1, j+2. If we run Al-

gorithm 2.3 then in the rth iteration the entries a(r+)

kj and a(r+)

k, j+1 were possibly changed in step 2(b).

In the next iteration, r′ = (k + 1, j + 1), the entry ãk, j+1 = a(r)
k, j+1 remains unchanged and a(r)

kj will

possibly change. However, the calculation of a(r)
kj and a(r′)

kj shows that their values remain unchanged

due to the fact that ãk+1, j = 0. So, ãkj = a(r′)
kj may have a representation (2) of order p as ãk, j+1 as

well as a representation of order p − 1. If ãk+1, j+1 = 0, then we have by Theorem 2.4(ii) ãk+1, j = 0,

too, and the orders of a(ρ+)

kj and a(ρ+)

k, j+1 were not changed in the iterations ρ � (k + 1, j + 2).
We first consider the case j � k and start with row n − 1.
By Lemma 1.3 we have ann �= 0. Set v := 0 if anj �= 0, j = 1, . . . ,n − 1; otherwise set v := max{ j ∈

{1, . . . ,n − 1} | anj = 0}.

If v > 1, then by Lemma 1.2 we have anl = 0, l = 1, . . . , v − 1, which yields a(n,2)
i j = aij , i = 1, . . . ,n,

j = 1, . . . , v; in particular, ãn−1, j = an−1, j , j = 1, . . . , v .
Now we show that for μ = n, . . . , v + 1

a(n,μ)

i j = aij − aiμanj

anμ
, i = 1, . . . ,n − 1, j = 1, . . . ,μ − 1, (4)

holds. The statement is valid for μ = n by A(n+1,2) = A. Assume that (4) is true for a fixed but
arbitrary v + 1 < μ. Since by (3) a(n,μ)

n,μ−1 = an,μ−1 �= 0 we have for i = 1, . . . ,n − 1, j = 1, . . . ,μ − 2,

a(n,μ−1)

i j = a(n,μ)

i j − a(n,μ)

i,μ−1a(n,μ)

nj

a(n,μ)

n,μ−1

,
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which yields after substituting (4) and noting that a(n,μ)

nj = anj ,

a(n,μ−1)

i j = aij − ai,μ−1anj

an,μ−1
.

Therefore, we have shown that (4) is valid, i.e.,

a(n,μ)

i j = |[i,n | j,μ]|
|[n | μ]| , μ = v + 1, . . . ,n.

Specification for row n − 1 of Ã yields (note footnote 3 and the range of the indices in step 2(b)
of Algorithm 2.3)

ãn−1, j = a(n,2)
n−1, j = a(n, j+1)

n−1, j = |[n − 1,n | j, j + 1]|
|[n | j + 1]| , j = v + 1, . . . ,n.

Finally, to show (ii), we have by anv = 0

ãn−1,v = an−1,v − an−1,v+1anv

an,v+1
= |[n − 1,n | v, v + 1]|

|[n | v + 1]| .

We assume now that the statements (i) and (ii) are true for all rows with numbers n − 1, . . . ,k + 1.
We show (i) and consider first the case ãk+1, j+1 �= 0. Then by the induction hypothesis there is an
integer p such that

ãk+1, j = |[k + 1, . . . ,k + p | j, . . . , j + p − 1]|
|[k + 2, . . . ,k + p | j + 1, . . . , j + p − 1]| ,

ãk+1, j+1 = |[k + 1, . . . ,k + p | j + 1, . . . , j + p]|
|[k + 2, . . . ,k + p | j + 2, . . . , j + p]| .

(5)

By running the steps up to (k + 2,2) of Algorithm 2.3 with the matrix which is obtained from A by
deleting its row k + 1 we get the representation

a(k+2,2)

kj = |[k,k + 2, . . . ,k + p | j, . . . , j + p − 1]|
|[k + 2, . . . ,k + p | j + 1, . . . , j + p − 1]| , (6)

and the similar one for a(k+2,2)

k, j+1 . Since by Theorem 2.4(i) A(k+2,2)[1, . . . ,k + 1 | 1, . . . ,n] is TN we can
proceed for row k similarly as for row n − 1. Application of Sylvester’s Identity yields

ãkj = a(k+2,2)

kj − ãk+1, ja
(k+2,2)

k, j+1

ãk+1, j+1
= |[k, . . . ,k + p | j, . . . , j + p]|

|[k + 1, . . . ,k + p | j + 1, . . . , j + p]| .

We now assume that ãk+1, j+1 = 0. This excludes the case k = j by Proposition 2.8 and it follows by
Theorem 2.4(ii) that ãk+1, j = 0. We obtain from (5) that∣∣[k + 1, . . . ,k + p | j, . . . , j + p − 1]∣∣ = 0 (7)

and ∣∣[k + 2, . . . ,k + p | j + 1, . . . , j + p − 1]∣∣ > 0

from which it follows by Lemma 1.3 that∣∣[k + 2, . . . ,k + p − 1 | j + 1, . . . , j + p − 2]∣∣ > 0.

Application of Sylvester’s Identity to (7) yields∣∣[k + 1, . . . ,k + p − 1 | j, . . . , j + p − 2]∣∣∣∣[k + 2, . . . ,k + p | j + 1, . . . , j + p − 1]∣∣
= ∣∣[k + 1, . . . ,k + p − 1 | j + 1, . . . , j + p − 1]∣∣∣∣[k + 2, . . . ,k + p | j, . . . , j + p − 2]∣∣
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whence

|[k + 1, . . . ,k + p − 1 | j, . . . , j + p − 2]|
|[k + 1, . . . ,k + p − 1 | j + 1, . . . , j + p − 1]|

= |[k + 2, . . . ,k + p | j, . . . , j + p − 2]|
|[k + 2, . . . ,k + p | j + 1, . . . , j + p − 1]| . (8)

Note that |[k + 2, . . . ,k + p | j + 1, . . . , j + p − 1]| �= 0 implies that |[k + 1, . . . ,k + p − 1 | j + 1, . . . ,

j + p − 1]| �= 0 by Lemma 1.2.
Now we apply Sylvester’s Identity to (6), plug in (8), and apply again Sylvester’s Identity to obtain

a representation of ãkj in the form (2).

ãkj = a(k+2,2)

kj

= |[k,k + 2, . . . ,k + p − 1 | j, . . . , j + p − 2]|
|[k + 2, . . . ,k + p − 1 | j + 1, . . . , j + p − 2]|
− |[k,k + 2, . . . ,k + p − 1 | j + 1, . . . , j + p − 1]||[k + 2, . . . ,k + p | j, . . . , j + p − 2]|

|[k + 2, . . . ,k + p | j +1, . . . , j + p −1]||[k +2, . . . ,k + p −1 | j +1, . . . , j + p −2]|
= |[k, . . . ,k + p − 1 | j, . . . , j + p − 1]|

|[k + 1, . . . ,k + p − 1 | j + 1, . . . , j + p − 1]| .

Now we prove (ii). We assume that the representations of ãkj and ãk, j+1 according to (2) are of
different orders. By the induction hypothesis the orders can differ only by one and the representa-
tion of ãk, j+1 must have the greater order, see the explanation following (ii). Therefore, we have the
following representations

ãkj = |[k, . . . ,k + p | j, . . . , j + p]|
|[k + 1, . . . ,k + p | j + 1, . . . , j + p]| ,

ãk, j+1 = |[k, . . . ,k + p + 1 | j + 1, . . . , j + p + 2]|
|[k + 1, . . . ,k + p + 1 | j + 2, . . . , j + p + 2]| .

(9)

We distinguish two cases:

Case (a): |[k + 1, . . . ,k + p + 1 | j + 1, . . . , j + p + 1]| = 0.

Application of Sylvester’s Identity to the matrix A[k, . . . ,k + p + 1 | j + 1, . . . , j + p + 2] yields

|[k, . . . ,k + p + 1 | j + 1, . . . , j + p + 2]|
|[k + 1, . . . ,k + p + 1 | j + 2, . . . , j + p + 2]| = |[k, . . . ,k + p | j + 1, . . . , j + p + 1]|

|[k + 1, . . . ,k + p | j + 2, . . . , j + p + 1]| ,

whence the representations of ãkj and ãk, j+1 are both of order p.

Case (b): |[k + 1, . . . ,k + p + 1 | j + 1, . . . , j + p + 1]| > 0.

By Lemma 1.3 it follows that∣∣[k + 1, . . . ,k + p | j + 1, . . . , j + p]∣∣ > 0.

Since the order of the representations of ãkj and ãk, j+1 differs ãk+1, j must vanish and by (5) it holds
that ∣∣[k + 1, . . . ,k + p | j, . . . , j + p − 1]∣∣ = 0

which implies by Lemma 1.3 |[k +1, . . . ,k + p +1 | j, . . . , j + p]| = 0. Application of Sylvester’s Identity
yields



Author's personal copy

3804 M. Adm, J. Garloff / Linear Algebra and its Applications 439 (2013) 3796–3806

|[k, . . . ,k + p + 1 | j, . . . , j + p + 1]|
|[k + 1, . . . ,k + p + 1 | j + 1, . . . , j + p + 1]|

= |[k, . . . ,k + p | j, . . . , j + p]|
|[k + 1, . . . ,k + p | j + 1, . . . , j + p]|
− |[k, . . . ,k + p | j + 1, . . . , j + p + 1]||[k + 1, . . . ,k + p + 1 | j, . . . , j + p]|

|[k + 1, . . . ,k + p | j + 1, . . . , j + p]||[k + 1, . . . ,k + p + 1 | j + 1, . . . , j + p + 1]|
= |[k, . . . ,k + p | j, . . . , j + p]|

|[k + 1, . . . ,k + p | j + 1, . . . , j + p]| = ãkj

by (9), whence ãkj possesses a representation of order p + 1, too.

We now consider the case k < j. Since the entries ãkj with k < j are identical to the entries b̃ jk ,

where B̃ = (b̃kj) is the matrix obtained from the transpose B := AT of A by the Cauchon Algorithm, cf.
(1), we can reduce this case to the case j < k, already discussed above. This completes the proof. �
3. Application to interval problems

We first give some auxiliary results which will be used in this section.

Lemma 3.1. (See [9, Corollary 3.5], [12, Proposition 3.6.6].) Let A, B, Z ∈ Rn,n, A, B be nonsingular with 0 �
A−1, B−1 . If A � Z � B, then Z is nonsingular, and we have B−1 � Z−1 � A−1 .

The determinantal monotonicity presented in the next lemma follows from a similar property
given [11, p. 27] for matrices whose leading principal submatrices have entry-wise nonnegative in-
verses. We present the proof here since we will refer to it in the proofs of Proposition 3.3 and
Corollary 3.7.

Lemma 3.2. Let A, B, Z ∈ Rn,n, A be NsTN, B be TN and A �∗ Z �∗ B. Then det A � det Z � det B.

Proof. We proceed by induction on n. The statement holds trivially for n = 1. Assume that the state-
ment is true for fixed n and let A, B, Z ∈ Rn+1,n+1, A be NsTN, B be TN, and A �∗ Z �∗ B . Assume
first that B is nonsingular. Then by Lemma 1.3 A[2, . . . ,n + 1], B[2, . . . ,n + 1] are NsTN and by the
induction hypothesis

0 < det A[2, . . . ,n + 1] � det Z [2, . . . ,n + 1] � det B[2, . . . ,n + 1]. (10)

Since 0 � (A∗)−1, (B∗)−1 and A∗ � Z∗ � B∗ , it follows from Lemma 3.1 that(
B∗)−1[1] �

(
Z∗)−1[1] �

(
A∗)−1[1],

whence

det B[2, . . . ,n + 1]
det B

� det Z [2, . . . ,n + 1]
det Z

� det A[2, . . . ,n + 1]
det A

. (11)

From

det B[2, . . . ,n + 1]
det Z [2, . . . ,n + 1] · det Z � det B

and (10) we obtain det Z � det B . The remaining inequality follows similarly. If B is singular set
B(ε) := B + εen+1eT

n+1 for 0 < ε , where en+1 denotes the last unit vector of Rn+1. Then B(ε) is
NsTN since by assumption

0 < det A[1, . . . ,n] � det B[1, . . . ,n]
and the claim follows now from the case that B is nonsingular and letting ε tend to zero. �
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Proposition 3.3. Let A, B, Z ∈ Rn,n with A �∗ Z �∗ B. If A, B are NsTN, then Ã �∗ Z̃ �∗ B̃ .

Proof. We give the proof only for j � k since as in the proof of Proposition 2.10 the case k < j can
be reduced to the case j < k by replacing A by AT . We show by decreasing induction on k = n, . . . ,1
that the representations of ãkj , z̃kj , b̃kj are of the same order and the following inequalities hold

(−1)k+ jãkj � (−1)k+ j z̃kj � (−1)k+ j b̃kj, j = 1, . . . ,k.

The statement trivially holds for k = n by (3).
Assume that the statement is true for fixed k + 1, in particular,

(−1)k+1+ jãk+1, j � (−1)k+1+ j z̃k+1, j � (−1)k+1+ j b̃k+1, j, j = 1, . . . ,k + 1. (12)

We want to prove the statement for k.
Set v A := 0 if ãk+1, j > 0, j = 1, . . . ,k; otherwise set

v A := max
{

j ∈ {1, . . . ,k} ∣∣ ãk+1, j = 0
}
.

Define v B similarly.
If v A = v B = 0, then by (12) z̃k+1, j > 0, j = 1, . . . ,k, and the representations of ãkj, z̃kj, b̃kj are

all of the same order for each j ∈ {1, . . . ,k}. Assume without loss of generality that k + j is even. If
ãkj > 0 we get similarly as in (11) (taking the reciprocal values)

ãkj � z̃kj � b̃kj. (13)

If ãkj = 0 it has a representation (2), where the numerator vanishes and the denominator is positive.
We replace akj by akj + ε , where ε > 0. Expansion of the resulting matrix along its first row or
column shows that its determinant becomes positive. We replace also bkj by bkj +ε and zkj by zkj +ε .
Application of Lemma 3.2 and letting ε tend to zero yields (13).

Now we assume without loss of generality that v := v A � v B and v A > 1. By Theorem 2.4(ii)
we conclude that ãk+1,l = 0, l = 1, . . . , v , from which it follows by (12) that b̃k+1,l = z̃k+1,l = 0, l =
1, . . . , v − 1. For each l ∈ {1, . . . , v − 1, v + 1, . . . ,k} the entries ãkl, z̃kl, b̃kl have representations of the
same order. This is also true for l = v if b̃k+1,v = 0. If 0 < b̃k+1,v or 0 < z̃k+1,v we proceed as in case
(b) in the proof of Proposition 2.10 (with j replaced by v) to increase the degree of the representation
of ãk+1,v (note that det A[k + 1, . . . ,k + p + 1 | v, . . . , v + p] = 0 by ãk+1,v = 0) so that ãk,v , z̃k,v , b̃k,v
have representations of the same order. Proceeding as in the case v A = v B = 0 we arrive at (13). This
completes the proof. �
Theorem 3.4. Let A, B, Z ∈ Rn,n, A, B be nonsingular and be in the same TN cell. If A �∗ Z �∗ B, then Z
belongs to the same TN cell that includes A and B.

Proof. The statement follows immediately from Proposition 3.3 using Theorem 2.5(ii). �
Remark 3.5. If A, B are TP, then both matrices are in the cell associated with the Cauchon diagram
with no black squares. It follows from Theorem 3.4 that Z , A �∗ Z �∗ B , is TP, too. This result is
already given in [5, Theorem 1]. Its proof is based on Lemma 3.1; for a proof see also [4, pp. 81–82],
[13, pp. 84–85].

Next we settle a conjecture [5] which concerns the case that the two bound matrices A, B are not
necessarily in the same cell.

Theorem 3.6. Let A, B, Z ∈ Rn,n with A �∗ Z �∗ B. If A, B are NsTN, then Z is NsTN.

Proof. Since 0 � Z̃ by Proposition 3.3 we have to show that Z̃ is a Cauchon matrix, see Theo-
rem 2.4(ii). By Proposition 2.8 we have ãkk > 0, k = 1, . . . ,n, which implies that z̃kk > 0, k = 1, . . . ,n.
Assume that z̃kj = 0 and 1 < k, j. Without loss of generality we may assume that k + j is even. Then
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it follows that ãkj = 0. Since Ã is a Cauchon matrix all entries of Ã to the left of the position (k, j)
or above it are zero. Without loss of generality we may assume that ãki = 0, i = 1, . . . , j − 1. Since
ãkk > 0, k = 1, . . . ,n, it follows that j < k. Since A �∗ B we conclude b̃k, j−1 = 0, whence all entries of
B̃ to the left of position (k, j − 1) or above it must vanish. Again, by Proposition 2.8 we can exclude
the latter case. It follows that z̃ki = 0, i = 1, . . . , j − 1, which concludes the proof. �

The example in [5] shows that Theorem 3.6 is not true if one of the bound matrices A, B is sin-
gular. Proceeding similarly as in the proof of the singular case in Lemma 3.2 we obtain the following
corollary as an extension of the nonsingular case.

Corollary 3.7. Let A, B, Z ∈ Rn,n with A �∗ Z �∗ B. If A, B are TN and A[2, . . . ,n] or A[1, . . . ,n − 1] is
nonsingular, then Z is TN.

In the tridiagonal case the assumptions can further be weakened.

Corollary 3.8. Let A, B, Z ∈ Rn,n with A �∗ Z �∗ B. If A, B are TN and tridiagonal, i.e., ai j = bij = 0 if
1 < |i − j|, i, j = 1, . . . ,n, then Z is TN.

Proof. Let A(ε) := A + ε I , where 0 < ε , and define B(ε), Z(ε) analogously. Then by Corollary 2.4
in [3] A(ε), B(ε) are TN and by Theorem 2.3 in [3]

0 < det A + εn � det A(ε),

whence A(ε) is nonsingular. By Lemma 3.2 B(ε) is also nonsingular and the statement follows now
from Theorem 3.6 and letting ε tend to zero. �

In [1] we give the largest amount by which the single entries of a tridiagonal TN matrix can be
perturbed without losing the property of being TN.
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