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Abstract Bounding the range of a sum of rational functions is an important task
if, e.g., the global polynomial sum of ratios problem is solved by a branch and
bound algorithm. In this paper, bounding methods are discussed which rely on the
expansion of a multivariate polynomial into Bernstein polynomials.
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1 Introduction

In this paper, we consider the expansion of a multivariate polynomial into Bernstein
polynomials over a box, i.e., an axis-aligned region, in R𝑛. This expansion has many
applications, e.g., in computer aided geometric design, robust control, global opti-
mization, differerential and integral equations, and finite element analysis [8], [13].
A very useful property of this expansion is that the interval spanned by the minimum
and maximum of the coefficients of this expansion, the so-called Bernstein coeffi-
cients, provides bounds for the range of the given polynomial over the considered
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box, see, e.g., [11]. A simple (but by no means economic) method for the compu-
tation of the Bernstein coefficients from the coefficients of the given polynomial is
the use of formula (2) below. This formula (and also similar ones for the Bernstein
coefficients over more general sets like simplices and polytopes) allows the sym-
bolic computation of these quantities when the coefficients of the given polynomial
depend on parameters. Some applications are making use of this symbolic compu-
tation: In [6, Sections 3.2 and 3.3] and the many references therein, the reachability
computation and parameter synthesis with applications in biological modelling are
considered. In [4, 5], parametric polynomial inequalities over parametric boxes and
polytopes are treated. Applications in static program analysis and optimization in-
clude dependence testing between references with linearized subscripts, dead code
elimination of conditional statements, and estimation of memory requirements in
the development of embedded systems. Applications which involve polynomials of
higher degree or many variables require a computation of the Bernstein coefficients
which is more economic than by formula (2). In [21], the second and third authors
have presented a matrix method for the computation of the Bernstein coefficients
which is faster than the methods developed so far and which is included in version
12 of the MATLAB toolbox INTLAB [17].
In this paper, we aim at finding bounds for the range of a sum of rational functions

over a box. This problem appears when the global polynomial sum of ratios problem
is solved by a branch and bound method, see, e.g., [7], [10]. The sum of ratios
problem is one of the most difficult fractional programming problems encountered
so far1.
After having introduced the Bernstein expansion in Section 2, we will extend in
Section 3 the bounds for the range of a single rational function to a sum of rational
functions. In the sequel we employ the following notation. Let 𝑛 ∈ N (set of the non-
negative integers) be the number of variables. A multi-index (𝑖1, . . . , 𝑖𝑛) ∈ N𝑛

is abbreviated by 𝑖. In particular, we write 0 for (0, . . . , 0). Arithmetic opera-
tions with multi-indices are defined entry-wise; the same applies to comparison
between multi-indices. For 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, its monomials are defined as
𝑥𝑖 :=

𝑛∏
𝑠=1

𝑥
𝑖𝑠
𝑠 . For 𝑑 = (𝑑1, . . . , 𝑑𝑛) ∈ N𝑛 such that 𝑖 ≤ 𝑑, we use the compact

notations
𝑑∑
𝑖=0
:=

𝑑1∑
𝑖1=0

· · ·
𝑑𝑛∑
𝑖𝑛=0
and

(𝑑
𝑖

)
:=

𝑛∏
𝑠=1

(𝑑𝑠
𝑖𝑠

)
.

2 Bernstein Expansion

In this section, we present fundamental properties of the Bernstein expansion over
a box, e.g., [8, Subsection 5.1], [11], [16], that are employed throughout the paper.

1 The problem of optimizing one or several ratios of functions is called a fractional program. The
ninth bibliography of fractional programming [18] covering mainly the period 2016-2018 lists 520
papers on fractional programming and its applications.
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For simplicity we consider the unit box u := [0, 1]𝑛, since any compact nonempty
box x of R𝑛 can be mapped affinely onto u. Let ℓ ∈ N𝑛, 𝑎 𝑗 ∈ R, with 𝑗 = 0, . . . , ℓ,
such that for 𝑠 = 1, . . . , 𝑛,

ℓ𝑠 := max
{
𝑞 | 𝑎 𝑗1 ,..., 𝑗𝑠−1 ,𝑞, 𝑗𝑠+1 ,..., 𝑗𝑛 ≠ 0

}
.

Let 𝑝 be an ℓ-th degree 𝑛-variate polynomial with the power representation

𝑝(𝑥) =
ℓ∑︁
𝑗=0

𝑎 𝑗𝑥
𝑗 . (1)

We expand 𝑝 into Bernstein polynomials of degree 𝑑, 𝑑 ≥ ℓ, over u as

𝑝(𝑥) =
𝑑∑︁
𝑗=0

𝑏
(𝑑)
𝑗

(𝑝)𝐵 (𝑑)
𝑗

(𝑥),

where 𝐵 (𝑑)
𝑗
is the 𝑗-th Bernstein polynomial of degree 𝑑, defined as

𝐵
(𝑑)
𝑗

(𝑥) :=
(
𝑑

𝑗

)
𝑥 𝑗 (1 − 𝑥)𝑑− 𝑗 ,

and 𝑏 (𝑑)
𝑗

(𝑝) is the 𝑗-th Bernstein coefficient of 𝑝 of degree 𝑑 over u which is given
by

𝑏
(𝑑)
𝑗

(𝑝) =
𝑗∑︁

𝑖=0

( 𝑗
𝑖

)(𝑑
𝑖

) 𝑎𝑖 , 0 ≤ 𝑗 ≤ 𝑑, (2)

with the convention that 𝑎𝑖 := 0 if 𝑖 ≥ ℓ, 𝑖 ≠ ℓ.
Note that by (2) the Bernstein coefficients are linear: Let 𝑝1 and 𝑝2 be polynomials

with the power representations (1) with ℓ = ℓ (1) and ℓ = ℓ (2) , respectively, and let
ℓ := max

{
ℓ (1) , ℓ (2)

}
. If 𝑝 = 𝛼𝑝1 + 𝛽𝑝2, 𝛼, 𝛽 ∈ R, then

𝑏
(𝑑)
𝑗

(𝑝) = 𝛼𝑏
(𝑑)
𝑗

(𝑝1) + 𝛽𝑏
(𝑑)
𝑗

(𝑝2), 𝑖 = 0, . . . , 𝑑. (3)

3 Bounds for the Range of a Sum of Rational Functions

Let 𝑝 and 𝑞 be two 𝑛-variate real polynomials with the Bernstein coefficients over
the unit box u given by 𝑏 (𝑑)

𝑖
(𝑝) and 𝑏 (𝑑)

𝑖
(𝑞), 0 ≤ 𝑖 ≤ 𝑑, respectively. We assume

that the two polynomials have the same degree 𝑙 since otherwise we can elevate
the degree of the Bernstein expansion of either polynomial by component where
necessary to ensure that their Bernstein coefficents are of the same order 𝑑 ≥ 𝑙. We
consider the multivariate rational function 𝑓 := 𝑝

𝑞
over u. In the sequel we assume
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that all 𝑏 (𝑑)
𝑖

(𝑞), 𝑖 = 0, . . . 𝑑, have the same strict sign (and without loss of generality
we may assume that all of them are positive). We use the notation for the rational
Bernstein coefficients of 𝑓

𝑏
(𝑑)
𝑖

( 𝑓 ) :=
𝑏
(𝑑)
𝑖

(𝑝)
𝑏
(𝑑)
𝑖

(𝑞)
, 𝑖 = 0, . . . , 𝑑. (4)

Then an enclosure for the range of 𝑓 over u is given by the following theorem which
includes also the polynomial case (𝑞 = 1).

Theorem 1 [15, Theorem 3.1], [12, Proposition 3] The range of 𝑓 over u can be
bounded by

min
𝑖=0,...,𝑑

𝑏
(𝑑)
𝑖

( 𝑓 ) ≤ 𝑓 (𝑥) ≤ max
𝑖=0,...,𝑑

𝑏
(𝑑)
𝑖

( 𝑓 ), 𝑥 ∈ u. (5)

(Vertex Condition) Equality holds in the left or right inequality if and only if the
minimum or the maximum of the Bernstein coefficents is attained at a vertex index 𝑖
with 𝑖𝑠 ∈ {0, 𝑑𝑠} , 𝑠 = 1, . . . , 𝑛.

Nowwe extend the bounds for the range over a box of a single rational function to
a sum of such functions. Without loss of generality, we consider here only the case
that we have solely two rational functions,

𝑓 = 𝑓1 + 𝑓2, where 𝑓1 =
𝑝1
𝑞1

, 𝑓2 =
𝑝2
𝑞2

. (6)

We assume that both the numerator and denominator polynomials have the com-
mon degree ℓ and that all the Bernstein coefficients of each denominator polynomial
have the same strict sign (but may be different for 𝑞1 and 𝑞2). By the additivity of
the Bernstein coefficients (3) and the enclosure (5), one may conjecture that

min
𝑖=0,...,𝑑

(𝑏 (𝑑)
𝑖

( 𝑓1) + 𝑏
(𝑑)
𝑖

( 𝑓2)) ≤ 𝑓 (𝑥) ≤ max
𝑖=0,...,𝑑

(𝑏 (𝑑)
𝑖

( 𝑓1) + 𝑏
(𝑑)
𝑖

( 𝑓2)), 𝑥 ∈ u. (7)

However, this conjecture is not true even in the case of ratios of linear functions as
the following example shows.

Example 1. Let 𝑓1 (𝑥) = 2𝑥+1
𝑥+1 and 𝑓2 (𝑥) = 0.2𝑥+1

5𝑥+1 . Then 𝑓 = 𝑓1 + 𝑓2 attains its
global minimum ≈1.645445 on [0, 1] at ≈0.4239. The rational Bernstein coeffi-
cients of 𝑓1 and 𝑓2 are 𝑏 (1)

0 ( 𝑓1) = 1, 𝑏 (1)
1 ( 𝑓1) = 1.5, 𝑏 (1)

0 ( 𝑓2) = 1, 𝑏 (1)
1 ( 𝑓2) = 0.2,

such that the lower bound in (7) is 1.7which is greater than the global minimum of 𝑓 .

We will return to (7) in Example 3.
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3.1 The Naïve Bounds

To motivate the enclosure (11) below, we consider first the univariate case (𝑛 = 1).
We start with recalling a formula for the Bernstein coefficients of the product 𝑝𝑟
of two polynomials 𝑝 and 𝑟 of degrees ℓ(𝑝) and ℓ(𝑟) in terms of their Bernstein
coefficients, see [9, formula (44)]. In the sequel, we suppress in the presentation of
the Bernstein coefficients the reference to their degrees. Since for the degree ℓ of the
polynomial 𝑝 · 𝑟 , ℓ = ℓ(𝑝) + ℓ(𝑟) holds, we obtain for 𝑘 = 0, 1, . . . , ℓ

𝑏𝑘 (𝑝𝑟) =
min{ℓ (𝑝) ,𝑘 }∑︁

`=max{0,𝑘−ℓ (𝑟) }

(ℓ (𝑝)
`

) (ℓ (𝑟)
𝑘−`

)(ℓ
𝑘

) 𝑏` (𝑝)𝑏𝑘−` (𝑟)

≤ max
`

𝑏` (𝑝)𝑏𝑘−` (𝑟)
1(ℓ
𝑘

) min{ℓ (𝑝) ,𝑘 }∑︁
`=max{0,𝑘−ℓ (𝑟) }

(
ℓ(𝑝)
`

) (
ℓ(𝑟)
𝑘 − `

)
. (8)

By the Vandermonde convolution, the last sum in (8) equals
(ℓ
𝑘

)
such that we can

conclude
𝑏𝑘 (𝑝𝑟) ≤ max

`
𝑏` (𝑝)𝑏𝑘−` (𝑟).

An analogous lower bound is provided by replacing the maximum by the minimum.
Returning to the two-term case in (6), we assume for simplicity that both the

numerator and denominator polynomials have the common degree ℓ and that the
Bernstein coefficients of 𝑞1 and 𝑞2 have the same strict sign. Put

𝑀 := max
𝑖, 𝑗=0,...,ℓ

(𝑏𝑖 ( 𝑓1) + 𝑏 𝑗 ( 𝑓2))

and

𝑠 := 𝑝1𝑞2 + 𝑞1𝑝2 − 𝑀𝑞1𝑞2. (9)

Then by (3), we obtain for 𝑘 = 0, 1, . . . , 2ℓ

𝑏𝑘 (𝑠) := 𝑏𝑘 (𝑝1𝑞2) + 𝑏𝑘 (𝑞1𝑝2) − 𝑀𝑏𝑘 (𝑞1𝑞2),

and by (8) with coefficents 𝛼` satisfying
∑

` 𝛼` = 1

𝑏𝑘 (𝑠) =
min{ℓ,𝑘 }∑︁

`=max{0,𝑘−ℓ }
𝛼` (𝑏` (𝑝1)𝑏𝑘−` (𝑞2) + 𝑏` (𝑞1)𝑏𝑘−` (𝑝2) − 𝑀𝑏` (𝑞1)𝑏𝑘−` (𝑞2))

=

min{ℓ,𝑘 }∑︁
`=max{0,𝑘−ℓ }

𝛼`𝑏` (𝑞1)𝑏𝑘−` (𝑞2) (
𝑏` (𝑝1)
𝑏` (𝑞1)

+
𝑏𝑘−` (𝑝2)
𝑏𝑘−` (𝑞2)

− 𝑀) (10)

≤ 0,
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by the definition of 𝑀 . Since by Theorem 1 𝑠(𝑥) ≤ max𝑘=0,...,2ℓ 𝑏𝑘 (𝑠), 𝑥 ∈ u, we
conclude that 𝑠(𝑥) ≤ 0 and therefore,

𝑓1 (𝑥) + 𝑓2 (𝑥) ≤ 𝑀, 𝑥 ∈ u.

Similarly we obtain a lower bound for 𝑓1 + 𝑓2 on u if we replace the maximum by
the minimum. The resulting enclosure for the range of 𝑓 = 𝑓1 + 𝑓2 on u

min
𝑖, 𝑗=0,...,𝑑

(𝑏 (𝑑)
𝑖

( 𝑓1) + 𝑏
(𝑑)
𝑗

( 𝑓2)) ≤ 𝑓 (𝑥) ≤ max
𝑖, 𝑗=0,...,𝑑

(𝑏 (𝑑)
𝑖

( 𝑓1) + 𝑏
(𝑑)
𝑗

( 𝑓2)), 𝑥 ∈ u, (11)

is simply the enclosure which we obtain if we form the (Minkowski) sum of the
enclosure (5) for 𝑓1 and 𝑓2. Therefore, this enclosure is obviously true also in the
𝑛-variate case which we will consider now again.
We put 𝑓 := max𝑥∈u 𝑓 (𝑥) and for 𝑑 ≥ ℓ,

𝑚 (𝑑) := min
𝑖, 𝑗=0,...,ℓ

(𝑏 (𝑑)
𝑖

( 𝑓1) + 𝑏
(𝑑)
𝑗

( 𝑓2)),

𝑚 (𝑑) := max
𝑖, 𝑗=0,...,ℓ

(𝑏 (𝑑)
𝑖

( 𝑓1) + 𝑏
(𝑑)
𝑗

( 𝑓2)).

In the sequal, we present our results mainly only for the upper bounds. Analogous
results hold for the lower bounds.

Theorem 2 The following vertex condition holds

𝑓 = 𝑚 (𝑑) if and only if 𝑚 (𝑑)
= 𝑏

(𝑑)
𝑖∗ ( 𝑓1) + 𝑏

(𝑑)
𝑖∗ ( 𝑓2) for a vertex index 𝑖∗.

Proof Assume that 𝑚 (𝑑) is attained at a vertex index 𝑖∗. Then the statement is clear
because the sum of the related Bernstein coefficients is a function value of 𝑓 , see
[15, Remark 1]. Conversely, assume that 𝑓 = 𝑚 (𝑑) , and let 𝑓 = 𝑓 (𝑥) for some 𝑥 ∈ u.
Define the polynomial 𝑠 as in (9) with 𝑀 = 𝑚 (𝑑) . Then we can conclude that

𝑠(𝑥)
𝑞1 (𝑥)𝑞2 (𝑥)

= 𝑓 (𝑥) − 𝑚 (𝑑)
= 0,

hence 𝑠(𝑥) = 0. Since 𝑠 is nonpositive on u, it attains its maximum at 𝑥.
On the other hand, in the multivariate case a straightforward extension of formula
(8) for the product of two polynomials in the Bernstein representation exists, see [2,
Section 3.3], by which we can conclude as in (10) that 𝑏𝑖 (𝑠) ≤ 0, for 𝑖 = 0, . . . , 2𝑑.
Since 𝑠(𝑥) ≤ max𝑖=0,...,2𝑑 𝑏𝑖 (𝑠), it follows that there exists an index 𝑖∗ with 𝑏𝑖∗ (𝑠) =
0, whence

max
𝑥∈u

𝑠(𝑥) = 𝑏𝑖∗ (𝑠).

By the polynomial vertex condition in Theorem 1, we can conclude that the index 𝑖∗
is a vertex index. �
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In [12], some properties of the bounds in the case of a single rational function
are presented. From Proposition 4 and Theorem 8 therein it immediately follows
that also in the multi-term case the bounds are monotone, i.e., for 𝑙 ≤ 𝑑 ≤ 𝑘 it
holds that 𝑚 (𝑑) ≤ 𝑚 (𝑘) and 𝑚 (𝑘) ≤ 𝑚 (𝑑) , and that the so-called inclusion isotonicity
of the interval function provided by the enclosure [𝑚 (𝑑) ( 𝑓 , x), 𝑚 (𝑑) ( 𝑓 , x)] is valid.
However, compared to the single-term case, we are losing one order of convergence
of the bounds to the range. So, degree elevation may not result in linear convergence.
This is shown by the following example.

Example 2.We choose 𝑛 = 1, 𝑓1 (𝑥) = 𝑥
2−𝑥 , 𝑓2 (𝑥) =

2−2𝑥
2−𝑥 . Then 𝑓 (𝑥) = 1, 𝑥 ∈ u.

The two Bernstein coefficients for 𝑑 = 1 of 𝑓1 as well as of 𝑓2 are 0 and 1. So
𝑚 (1)

= 2 which cannot be improved by degree elevation because both coefficients
are function values.
To enforce convergence of the bounds to the range we apply subdivision. The

convergence result (Theorem 4) will immediately follow from the linear convergence
of the bounds with respect to the width of the box.

Theorem 3 Let x = [𝑥, 𝑥] be any subbox of u. Then

max
𝑖, 𝑗=0,...,𝑑

(𝑏 (𝑑)
𝑖

( 𝑓1, x) + 𝑏
(𝑑)
𝑗

( 𝑓2, x)) −max
𝑥∈x

𝑓 (𝑥) ≤ 𝛿 | |𝑥 − 𝑥 | |∞,

where 𝛿 is a constant not depending on x.

Proof Let max𝑥∈x 𝑓 (𝑥) = 𝑓 (𝑥 ′), with 𝑥 ′ ∈ x, and define 𝑓 𝑚 := max𝑥∈x 𝑓𝑚 (𝑥),
𝑚 = 1, 2. Then 𝑓 (𝑥 ′) can be written as

𝑓 (𝑥 ′) = 𝑓 1 + 𝑓 2 + 𝑓1 (𝑥 ′) − 𝑓 1 + 𝑓2 (𝑥 ′) − 𝑓 2.

We apply the results on quadratic convergence in the single-term case [12, Theorem
6] and a standard argument involving the Mean Value Theorem, e.g., [14, Theorem
4.1.18] to 𝑓1 and 𝑓2 to obtain

max
𝑖=0,...,𝑑

𝑏
(𝑑)
𝑖

( 𝑓1, x) + max
𝑗=0,...,𝑑

𝑏
(𝑑)
𝑗

( 𝑓2, x) − 𝑓 (𝑥 ′) ≤ 𝛿1 | |𝑥 − 𝑥 | |2∞ + 𝛿2 | |𝑥 − 𝑥 | |∞,

where 𝛿1 and 𝛿2 are constants not depending on x. Since | |𝑥 − 𝑥 | |∞ ≤ 1 the proof is
complete. �

To simplify the presentation, we will reserve in the sequel the upper index of the
Bernstein coefficients for the subdivision level. Repeated bisection of u(0,1) := u in
all 𝑛 coordinate directions results at subdivision level 1 ≤ ℎ in subboxes u(ℎ,a) of
edge length 2−ℎ, a = 1, . . . , 2𝑛ℎ. Denote the Bernstein coefficients of 𝑓 over u(ℎ,a)

by 𝑏 (ℎ,a)
𝑖

( 𝑓 ). For their computation see [21].
Theorem 4 (Linear convergence with respect to subdivision) For 1 ≤ ℎ it holds

max
𝑖, 𝑗=0,...,𝑙; a=1,...,2𝑛ℎ

(𝑏 (ℎ,a)
𝑖

( 𝑓1) + 𝑏
(ℎ,a)
𝑗

( 𝑓2)) − 𝑓 ≤ 𝛿2−ℎ,

where 𝛿 is a constant not depending on ℎ.
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With increasing subdivision level, the chances are becoming better and better that
the vertex condition holds on subboxes.
In the subdivision process, it may be advantageous to check the vertex condition of

Theorem1 term-wise because then we will be able to detect terms for which we have
already found the true minimum or maximum of the respective rational functions
such that a further division of the boxes under consideration is not necessary for
these terms. If the vertex condition is satisfied for the lower or the upper bounds
for all terms and the individual vertex indices coincide for at least one index, then
the vertex condition in Theorem 2 is fulfilled, and we already have found the true
minimum or maximum of the sum of ratios.
The convergence can possibly be speeded up by employing term-wise the mono-

tonicity and dominance tests presented in [19, Section 6.1].
Example 3. In [1, Example 3], see also [10, (5.14)], the function 𝑓

𝑓 :=
−𝑥21 + 16𝑥1 − 𝑥22 + 16𝑥2 − 𝑥23 + 16𝑥3 − 𝑥24 + 16𝑥4 − 214

2𝑥1 − 𝑥2 − 𝑥3 + 𝑥4 + 2

+
−𝑥21 + 16𝑥1 − 2𝑥

2
2 + 20𝑥2 − 3𝑥

2
3 + 60𝑥3 − 4𝑥

2
4 + 56𝑥4 − 586

−𝑥1 + 𝑥2 + 𝑥3 − 𝑥4 + 10

+
−𝑥21 + 20𝑥1 − 𝑥22 + 20𝑥2 − 𝑥23 + 20𝑥3 − 𝑥24 + 20𝑥4 − 324

𝑥21 − 4𝑥4
,

where

𝑥1 ∈ [6, 10], 𝑥2 ∈ [4, 6], 𝑥3 ∈ [8, 12], 𝑥4 ∈ [6, 8],

is to maximize. We have chosen the precision 𝜖 = 10−5 and have used an HP OMEN
laptop with Intel®CoreTM i7-10750H with CPU 2.20-5.0 GHz and 16 GB RAM.
The method presented in Section 3 results in 0.043 ms at subdivision level ℎ = 7 in
the upper bound 16.16667 for 𝑓 attained at (6, 6, 10.05502, 8). The upper bound is
very close to the bounds presented in [1] (computed with precision 10−2) and [10]
(computedwith precision 10−4, according to a private communication). Interestingly,
the conjectured bound (7) provides nearly the same bound attained at the same place
but for ℎ = 94. The much higher subdivision level is not surprising because we
cannot employ a vertex condition which is very useful to speed up the subdivision
process.
We noticed a similar situation for the minimum. Our algorithm finds in 0.015

ms in only one subdivision step (ℎ = 1) the lower bound 0.976190 attained at
(6, 4, 12, 6) for the minimum of 𝑓 . Since this bound is attained at a vertex index, the
vertex condition in Theorem 2 holds, and we know that we already have found the
minimum of 𝑓 . The same lower bound is provided by (7) at the same place but for
ℎ = 72 which confirms our experience that (7) is true in many cases.
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3.2 Improved Bounds

In the single-term case, the bounds converge quadratically if subdivision is applied
[12, Theorem 7]. Therefore, it appears advantageous to reduce the multi-term case to
the single-term case by extending all ratios to the same denominator to obtain a single
rational function which is to optimize. In Example 2, this gives the exact range {1} of
𝑓 . But such a procedure is not appropriate for a larger number of terms because the
degrees of the resulting numerator and denominator polynomials become potentially
large. However, we may partition the totality of the terms into groups of two or three
terms and apply the procedure to each group. Finally, we form the (Minkowski)
sum of all resulting enclosures. This procedure requires to compute the Bernstein
coefficients of a product of two polynomials given the Bernstein coefficients of
both polynomials. For this task it is beneficial to use one of the methods which are
presented in [22, Section 4].
In passing, we note that most of the results presented in this paper easily extend to

the Bernstein expansion over simplices [15, Remark 6], [19], [20], [23] which allow
more general regions over which a sum of ratios is to optimize.

4 Future Work

To fight the increase of the degrees inherent in the method described in Section 3.2,
one can use the least common multiple of the denominators. To compute this, one
employs the greatest common divisor of the polynomials. A method which appears
suitable for this task is the method for the division of two polynomials in Bernstein
form presented in [3]. However, the focus herein is on the univariate case. Division
algorithms for the multivariate case and analogues in the multivariate Bernstein
setting of Gr¥obner bases are also discussed but have to adapted to our problem. An
important point here is that the methods allow all the computations to be performed
using onlyBernstein coefficients such that no conversion to themonomial coefficients
is required.
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